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Abstract
We present a novel method to generate quad meshes for non-rigid objects. Our method takes into account the geometry of
a collection of key poses in one-to-one correspondence or even an entire animation sequence. From this input, on a common
computational domain, an extremal metric is computed that captures the local worst case behavior in terms of distortion as the
object undergoes deformation. An anisotropic, non-uniformly sized quad mesh is then generated based on this metric. This mesh
avoids undersampling when deformed into any of the poses specified in the input and thus reduces artifacts. Hence, in contrast
to previous approaches which target static geometry, our method aims to optimize the mesh’s adaptation to the shape for every
pose expected during animation or deformation rather than for one specific reference state.

1 Introduction
In recent years a variety of versatile methods for the automatic quadrangular remeshing of surfaces has been developed. These
methods typically optimize the properties of the quad mesh, such as element size, anisotropy, orientation, and mesh connectivity,
with respect to the specific given surface geometry. Note that this is appropriate only when dealing with rigid objects with static
geometric properties. At the same time, it is common for quad meshes to be used in animation or simulation. In this case, while
the quad mesh might be well adapted to a particular specific state or pose (based on which it was generated and optimized), it
may be a poor match for other poses or states of deformation (cf. Figures 1, 8, and 7).

We present a method that aims to produce quadrangulations adequate for every pose during deformation or animation, rather
than optimal for a single pose (cf. Figures 1 and 2). If known a priori, the deformation can be given as input in form of a complete
surface animation sequence. Otherwise, the expected space of deformation can be outlined by a set of extremal key poses.

Based on one-to-one correspondences between the key poses or animation frames we analyze the deformation structure and
construct an extremal metric corresponding to the worst-case local metric behavior at every point of the surface. Furthermore,
information about preferable mesh element orientation is determined jointly over the expected deformation. Together, this allows
us to generate an adapted quad mesh with anisotropic element sizing that avoids undersampling artifacts due to being too coarse
in any region for any pose when being deformed.
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Figure 1: Illustration of our deformation-aware mesh generation method in contrast to a standard, static method [20]. Three
poses (left) are taken as input. The standard method optimizes the mesh with respect to the metric of one specific pose, P0;
ours uses an extremal metric it computes over all poses. In the top row, the resulting quad mesh deformed into the poses other
than P0 exhibits artifacts, especially in areas of significant stretching and bending (red). Our quad mesh (bottom row) shows
better behavior (despite even having a slightly lower total number of elements) in these poses. Notice that this comes with
an increased number of irregular vertices; these are induced by the stronger local variation in element size and shape due to
deformation-awareness.
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Figure 2: The same quad mesh Q in four different poses for which it was jointly optimized using our technique with extremal
metric. Notice, for instance, the higher density of the mesh in the left pose on the knees (because they get bent strongly in poses
P1 and P2), under the arm (because it gets stretched in pose P2), and on the belly (because poses P2 and P3 are more corpulent).

2 Related Work
Quad Meshing An account of modern quadrangular surface remeshing techniques is given in a recent survey [4]. Parametriza-
tion based techniques have received the most attention in recent years for their flexibility and result quality [2,5,7,9,14,23,32,37,
42,45]. These methods all optimize the mesh properties for one specific surface pose.

A step towards taking surface deformation or animation into account has been made by Marcias et al. [33]: the orientation of
mesh elements is chosen based on the principal directions of local surface stretch during deformation. The work by Meng and He [35]
considers combined feature determination over multiple poses, again to influence mesh element orientation. Our contribution is
orthogonal and complementary to these works: we focus on the determination of appropriate element sizing, anisotropy, and
shear ; it can be used in conjunction with these techniques that determine orientation, as well as other, e.g. principal curvature
direction based techniques, as detailed in Section 5. Interactive, user-assisted quadrangulation techniques [34, 49] are another
option for mesh generation: the user can design the mesh taking knowledge about expected deformation behavior into account.

Cross Fields A key component of quad remeshing techniques based on parametrization is the computation of 4-symmetric
direction fields. These fields predetermine the parametrization’s singularities and thus the quad mesh’s irregular vertex structure,
and provide directional guidance information for the parametrization’s isolines (which correspond to the quad mesh’s edges). Key
contributions in this context concern the efficient handling of the 4-symmetry [18,26,41], control over the field topology [5,11,31,48],
and generalization to non-orthonormal directions [13,21,42]. A recent survey [52] provides a detailed overview of the topic.

Custom Metrics In some instances of previous work properties of cross fields or parametrizations are optimized with respect
to a metric different from the standard Euclidean metric. For instance, the surface under consideration can be virtually smoothed
in this way, geometrically [47] or even topologically [14]; the shape operator can be used as metric tensor to improve approximation
properties [17,27]. Also user-designed metrics can be taken into account, e.g. for the creation of cross or frame fields with spatially
varying magnitude and skewness [21,40].

Deformation-Aware Meshing A number of works have addressed the problem of generating triangle meshes for non-rigid
models. They proceed by decimating an overly dense mesh, taking an animation sequence or individual key poses into account
[12, 29, 30, 36]. This is generally accomplished by averaging the employed decimation error functions over the animation frames
or poses. In Section 4.1, we discuss why direct averaging can be inadequate in our context. Several authors proposed techniques
to dynamically adjust the mesh connectivity during animation [19,25,43] for application scenarios where this is appropriate. We
focus here on the case of a quad mesh with static connectivity, because 1) this is more generally applicable in the context of
animation and simulation and 2) the set of possible connectivity changes in quad meshes is less rich compared to the triangle
case [3, 44,50], even more so if not only proper connectivity but element quality is taken into consideration.

3 Overview
The input to our method is a set of N surfaces Pi, called poses, with pairwise diffeomorphisms hij : Pi → Pj mapping between
them. When the poses are obtained through deformation from a reference pose, say P0, such maps are of course immediately
available.

The sequence of poses can be the frames of a complete animation sequence, or a set of key poses which ideally are extremal,
in the sense that other expected deformation states are likely to lie within the convex hull, i.e. could be obtained by interpolation
between some of the key poses. The input order of poses plays no role in our method.

With existing quad meshing algorithms one could generate a quad mesh optimized for an individual pose Pi (based on its
Euclidean metric, or any other shape related metric, cf. Sections 2 and 4). By means of the maps hij , one can deform this quad
mesh into a quad mesh for any other pose Pj . However, it may be unfit for those poses, with artifacts due to undersampling,
stretch, or shear, as illustrated in Figure 1.
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Figure 3: Overview of our method: Multiple poses or frames (P0, P1, P2) are taken as input. Metrics gi and orientation fields di
are computed per pose. The metrics are consolidated into an extremal metric gmax on a common domain. Orientation fields are
combined through appropriate averaging operations. Based on this a cross (or frame) field and a field guided parametrization are
computed. Finally, a quad mesh is extracted from the parametrization.

In our approach we express the target metrics of the individual poses on one common computational domain and combine
them into an extremal metric that expresses what quad mesh element sizing and anisotropy is appropriate for all poses, avoiding
undersampling in all directions, for all poses (Section 4). Intuitively, elements are made smaller in regions that get stretched
in some pose, so they do not become overly large when deformed accordingly. Similarly, information about preferred element
orientation (based on shape-derived properties such as principal curvature directions, or on deformation-derived properties such
as principal stretch directions [33]) is combined on the common domain (Section 5). A quad mesh can then be optimized with
respect to this metric and orientation information using (variations of) state-of-the-art techniques (Section 6). We demonstrate
that this strategy yields meshes which behave better when undergoing deformation (Section 7). Figure 3 shows a visual overview.

4 Deformation-Aware Metric
In order to enable control over the sizing and anisotropy of mesh elements one can approach the quad mesh generation problem
as follows: let a standard quad meshing method simply aim for unit square quads, while adjusting the notion of “unit square” by
means of a custom metric on the surface. For a background on the concepts of differential geometry
used in the following, we refer to the introduction by Frankel [16].

Let gi be a Riemannian metric tensor field on pose Pi. As usual, for a choice of local tangent space
bases these quadratic forms can be represented by matrices, gi(x) ∈ R2×2, for every point x on Pi.

The following types of metrics are of particular relevance:

• gi = sI uniform, isotropic
• gi = si(x)I non-uniform, isotropic
• gi = Ai(x) non-uniform, anisotropic

Here I ∈ R2×2 is the identity, s ∈ R is a global scaling factor, si : Pi → R is a scalar sizing field on
Pi, and Ai : Pi → R2×2 is an arbitrary field of positive definite quadratic forms, i.e. symmetric positive
definite matrices, on Pi.

Anisotropically sized elements are particularly of interest to minimize and equalize discretization
errors. A choice of gi = sSi, where Si is the shape operator on Pi (whose eigenvalues and eigenvectors
are the principal curvatures κmin and κmax and their directions vmin and vmax, respectively) is known to
optimize the geometric approximation of the surface [17] by the resulting mesh in the limit of small quads.
A choice of gi = sSTiSi (illustrated in the inset) is known to optimize approximation in terms of equalized
surface normal error [27]. In practice, to ensure positive definiteness in regions of vanishing surface
curvature, these can be regularized by adding εI with ε > 0. More generally, for the approximation of
arbitrary functions (surface signals), gi = sHi is L2-optimal [38], where H is the function’s Hessian.

4.1 Metric Consolidation
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Figure 4: Visualization of metric tensors at random points as
ellipses which are unit circles under the respective metric. The
metric shown here is based on the shape operator S. Metric g1
on pose P1 is mapped to pose P0 as g01. Then g00 (=g0) and g01
are combined to gmax on P0 (which in this particular example is
essentially equal to g01).

We can “transfer” the metric gj from Pj to Pi as the pullback
h∗ijgj of gj by hij . Let Jij be the Jacobian of hij , then h∗ijgj =

Jᵀ
ijgj Jij . In this way we can, in particular, obtain the set of
N metric tensors g0i := h∗0igi on P0 (where g00 := g0), cf.
Figure 4. Note that computing a quad mesh on P0 based
on metric g0i and mapping the result to Pi via h0i would
yield the same result as performing the computation on Pi
based on metric gi (in a hypothetical exact setting, i.e. up
to numerical or discretization effects). We are thus now able
to perform computations targeted at specific poses Pi on a
common computational domain; w.l.o.g. we choose P0.

Our goal is to compute a quad mesh that is not optimized
for a specific pose, but for all poses. We thus create a new
metric on P0 that takes all the metrics g0i into account. A
simple choice is the average metric

gavg =
1

N

N−1∑
i=0

g0i (1)
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defined on P0. This is akin to the average (or sum) error functions used in pose-aware triangle mesh decimation techniques (cf.
Section 2). The problem with this averaging is that it implicitly weights local deformation states by how common they are in the
pose set. For instance, consider a large set of poses of a character model where each pose is derived from a rest pose by exercising
one joint to one of its extremes. In this case the average metric does hardly differ from the metric of the rest pose, because every
surface region is in its rest state in all but one of the many poses.

P0 P1 P2

Figure 5: The effect of the extremal metric gmax on a simple
plane model, bent into different poses. Depending on whether
only pose P0 (left), poses P0 and P1 (middle), or poses P0, P1,
and P2 (right) are taken as input, the resulting quad mesh (shown
deformed into the different poses below) will have its element
sizing and anisotropy adapted accordingly. A metric based on
shape operator S was used here, so element shapes are adapted
to curvature: the most extreme curvature encountered locally in
any of the poses determines the local element shape and size.

Extremal Metric We thus propose the use of an extremal
metric rather than an average metric. For the above example
this means that the metric locally reflects the surface stretch
experienced in the poses that deform a region the most, rather
than the rest pose (cf. Figures 4 and 5).

One needs to decide whether the metric should be ex-
tremal in a maximum or a minimum sense; intuitively, whether
it should be sensitive to the largest stretching or the largest
squeezing of the surface. For the purpose of meshing, the for-
mer is relevant, because stretching leads to undersampling,
whereas squeezing only leads to unnecessarily fine sampling
(which is only an issue if mesh simplicity is of highest prior-
ity). We thus define

g′max(v, v) =
N−1
max
i=0

g0i(v, v) (2)

for any tangent vector v. Notice that g′max defined in this
way is not a quadratic form, i.e. not a Riemannian metric, in
general. We thus consider instead a tight bounding quadratic
form gmax defined via

det(gmax)→min s.t. gmax(v, v) ≥ g′max(v, v) for all v. (3)

4.2 Implementation Details
The poses Pi are given as triangle meshes. We compute the
necessary metric-related values per triangle or vertex of P0 as
follows.

Computing the Jacobians J0i Let each triangle in each
of the poses be equipped with a local 2D coordinate system.
Let a, b, c be the coordinates of the three vertices of a triangle
in P0. The Jacobian of h0i in this triangle is then computed
as

J0i =
[
h0i(b)− h0i(a) h0i(c)− h0i(a)

] [
b− a c− a

]−1
.

Depending on the mesh generation technique to be used, a metric defined on a per-triangle or per-vertex basis might be required.
In the per-vertex case, per-vertex Jacobians can be interpolated from those of the incident triangles (after rotations about the
respective axes nt × nv , aligning a triangle tangent plane, with normal nt, to the vertex tangent plane, with normal nv).

Computing the shape operator S We estimate principal curvatures κmin,i, κmax,i and their directions dmin,i, dmax,i on a
pose Pi [10] (again with respect to local coordinate systems). Then Si = κmin,idmin,id

ᵀ
min,i + κmax,idmax,id

ᵀ
max,i.

Computing the extremal metric gmax While it is long known that the optimization problem (3) has a unique solution [1,22],
no simple technique to find it if N > 2 is available. Even if we just require the inequality to hold for a sample of directions
v, non-trivial iterative solution techniques are necessary [28]. As we need to perform this for every single triangle, we use an
approximation instead:

Each metric g0i can be written as g0i = λaidaid
ᵀ
ai+λbidbid

ᵀ
bi, where λai, λbi are the eigenvalues, and dai, dbi the eigenvectors

of g0i. We construct gmax = λadad
ᵀ
a + λbdbd

ᵀ
b , where the eigenvectors da and db are taken from gavg, and the eigenvalues λa, λb

are computed as:
λa/b =

N−1
max
i=0

λai(d
ᵀ
a/b

dai)
2 + λbi(d

ᵀ
a/b

dbi)
2. (4)

A simple calculation shows that we then have

gmax(da/b, da/b) = g′max(da/b, da/b) =
N−1
max
i=0

g0i(da/b, da/b),

i.e. the approximation is exact in the principal directions da and db. One can furthermore show (cf. Appendix A) that for
other directions v, the approximation error is bounded: g′max(v, v)/gmax(v, v) < 2, i.e. the underestimation of lengths is bounded
everywhere and in any direction by a factor

√
2. The approximation can thus easily be made conservative by scaling with a

corresponding factor. This global scaling, of course, is without effect if the quadrangulation is performed with respect to a target
mesh complexity rather than a specific target sizing, and might as well be omitted.

5 Element Orientation
Often, orienting quad elements such that edges follow principal curvature directions, at least in significantly curved regions, is of
interest [5, 8]. Alternatively, the user may want to specify the orientation manually, usually in a sparse manner.

We can model such directional guidance objectives in a general way as follows. Let di be a tangent vector field on Pi whose
direction specifies the desired edge orientation (e.g. the minimum principal curvature direction or another direction set by the
user) and whose magnitude specifies the importance (e.g. it may be related to the local anisotropy of the surface, or be 0 in regions
where there is no preference in terms of element orientation).

Let d0i := Ji0di be the pullback of di by h0i on P0. Note that these directions can obviously be contradictory: d0i may differ
from d0j for i 6= j. This, for instance, is the case if di and dj are principal curvature directions and the surface is bent differently
in poses Pi and Pj . In such cases we strive to align to these directions as well as possible by striking a balance.
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To this end, we compute a weighted average of the directions specified by d0i, where the weights are dictated by the magnitudes
‖d0i‖. Here it is important to note that a cross field as well as a regular quad mesh, away from extraordinary vertices, has a
4-symmetric structure; whether we enforce element orientation according to a direction d, d⊥, −d, or −d⊥ is irrelevant. Here
d⊥ denotes a π

2
-rotated (in the tangent plane) version of d. This invariance to rotations by multiples of π

2
must be considered

to obtain a proper average. For instance, averaging d and d⊥ should not result in (some multiple of) d + d⊥, but in d (or any
k π

2
-rotation thereof, k ∈ Z).
To achieve this invariance, we map the vector fields d0i to 4th-order tensor fields [41] which are inherently invariant to rotations

by multiples of π
2
. In form of the so-called representation vector [41], they can be averaged by simple vector addition:

d̄avg :=
1

N

N−1∑
i

d̄0i,

where d̄ denotes the 4th-order tensor representation of d. The result is then mapped back to a vector field davg. Note that
this, due to the involvement of the magnitude of d0i, is a weighted average. A very similar π

2
-symmetric averaging operation is

performed in [33]; some difference lies in that that work uses as final weight (i.e. magnitude of davg) the (weighted) average of the
magnitudes of the d0i, regardless of how compatible or contradictory the individual directions are. With the formulation here,
the weights (encoded in the magnitude of the d̄0i) are attenuated depending on how strongly the individual directions differ.

5.1 Implementation Details
Curvature Guidance Some binary feature filters have been proposed in the past [5,8,39], that can be used to identify salient
regions on meshes. We can apply them per pose Pi and set the directional guidance field di to a unit vector in minimum curvature
direction in salient regions, and to zero everywhere else. Alternatively, a continuously weighted alignment term can be used by
setting the local magnitude of di based on a curvedness measure on Pi, e.g., as in [23,26,46].

Stretch Guidance As proposed in [33], one can orient quad mesh elements according to the principal directions of stretch
occurring when deforming P0 to Pi. Here this corresponds to setting di to (|λ0|/|λ1| − 1)s0, where |λ0| > |λ1| are the singular
values and s0 is an eigenvector of J0i. Such a choice of directional guidance puts a focus on element shear reduction.

Tensor Conversion Let d be a tangent vector represented using coordinates in a local 2D tangent coordinate system. Using
the standard identification of R2 and C, we can write d = reiθ, which is the complex representation of d. The representation
vector of the 4th-order tensor then simply is d̄ = rei4θ.

6 Mesh Generation
Having constructed a metric g (with the case of particular interest here being g = gmax) and a guidance field d = davg, both on
P = P0, we strive to generate a quad mesh that is as uniform as possible in g (i.e. with unit length edges and right face angles,
measured in g), while edges tend to align to d. The meshing approaches based on cross field guided parametrization (cf. Section
2) are particularly suited for this task. There are two main categories: methods based on global parametrization (e.g. [5, 23]) or
local parametrization (e.g. [20, 46]). The former approach generates a globally consistent integer grid map that implies a pure
quad mesh, but requires rather involved measures to achieve robustness [2, 7]. The latter approach is simpler but generates a
quad-dominant mesh only—which can be turned into a pure quad mesh by subdivision (introducing an additional irregular vertex
for each non-quad) [20].

Most of the meshing methods from these two categories were proposed in a formulation that assumes the Euclidean metric
gEuclid =I. Global parametrization methods can be adapted to a different metric g (in particular our gmax) either through ‘metric
uniformization by surface deformation’ as proposed by [42], or through the use of g in the definition of parallel transport for the
cross field generation and in the definition of norms in the parametrization energy.

The local parametrization based approach has the characteristic property of automatically introducing additional extraordi-
nary vertices (besides those already imposed by the guiding cross field) where necessary to keep the mesh elements very close to

P0 P1 P2

Figure 6: The mesh of Figure 1 bottom as generated when using [2]
instead of [20] with our technique. The number of non-regular vertices
is lower, while quads are shaped worse.

their desired local size and shape. According to our ex-
periments, this is particularly beneficial when the metric
varies significantly across the surface, e.g. due to strong
deformations between poses. The global parametrization
approach, by contrast, leads to a smaller number of ex-
traordinary vertices in such cases, at the cost of higher
element distortion (cf. Figure 6). As the optimal trade-off
is application dependent, we do not intend to advocate
one approach over the other and note that either one can
be used with our technique. As it more clearly conveys
the effects of metric variations, we choose to use a local
parametrization approach [20] for demonstrations herein.
We adapt it to custom metrics as detailed in the following.

6.1 Metric-Aware Local Parametrization
Like most related methods, the recent local parametrization approach [20] was described for gEuclid. The authors state that it is
straightforward to use custom metrics with this technique. While this is indeed true from a high level perspective, a number of
non-trivial issues and details need to be addressed when taking a closer look on a lower level. We describe in the following how
this method can be generalized to Riemannian metrics such as our gmax. For brevity, we do not repeat the overall algorithm here
but refer the reader to the original paper [20].

Symmetry Groups The method relies on the sets R and T , which represent the cross field’s rotational symmetry group and
the integer grid’s translational symmetry group, respectively. Under the Euclidean metric, the elements of R can be obtained
from one representative element (unit vector) o via R(o,n, k) = rot(n, k π

2
)o, where rot(n, θ) is a rotation matrix around axis n

by angle θ.
In our case, the four vectors of a metric-dependent cross are supposed to be in π

2
increments with respect to g. This is achieved

using the definition Rg(o,n, k) =
√
g−1rot(n, k π

2
)
√
g o, where √g is computed via singular value decomposition: √g = U

√
ΣUT
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where UΣUT= g. Note that if o is a unit vector under g, i.e. oTg o = 1, so are the other resulting elements of Rg . Hence Rg
properly represents crosses that are orthonormal under g.
Tg in our case is supposed to represent a regular grid under g, i.e. a general oblique lattice in Euclidean space. It is simply

spanned by the vectors of Rg .

Metric Transport In order to compare vectors from different tangent spaces, they must be transported to a common space.
This is accomplished by a definition of parallel transport. A common choice in the discrete setting is unfolding via the rotation
matrix Rji = rot(nj × ni,](nj ,ni)), where ni and nj are the normals of two tangent spaces on P . The vector oj from tangent
space j transported to tangent space i then is computed as oji = Rjioj .

In our setting we also need to be able to transport metric tensors. We define gji (the tensor gj from tangent space j transported
to tangent space i) as gji = RTijgj Rij , where Rij = R−1

ji . A simple calculation shows that oTjigji o
′
ji = oTj gj o

′
j holds, i.e. this

definition of metric transport is consistent with the above vector transport.
One situation where this metric transport is to be used is in the initial construction of a multiresolution hierarchy of P . When

two vertices i and j are merged to a vertex v on a coarser level, a metric tensor for this vertex is interpolated; the tensors of i
and j are transported to v and averaged: gv = 1

2
(giv + gjv). Further uses of metric transport occur in the following.

Period Jumps When comparing and averaging crosses in neighboring tangent spaces i and j, the period jump kij needs to be
determined. For orthogonal crosses this can be done as originally described: kij=argmink ](oi,R(oji, k)), i.e. by just considering
one pair of representative vectors. The result is independent of which vector oi is used as representative for the cross at i.

With our metric g, the crosses are not orthogonal, as described above. The choice must thus be made differently in order to
determine the period jump that best aligns the crosses, not just individual representative vectors. This is achieved by:

kij = argmin
k

∑
0≤l<4

](Rgi (oi, l),Rgji (oji, l + k)).

In this way, the combined alignment of all four vector pairs is measured for each choice of period jump to determine the optimal
one. By symmetry, the sum can actually be restricted to 0 ≤ j < 2 without changing the result.

Finally, it bears noting that the extrinsic smoothness measures which are demonstrated as being beneficial in [20] are not
appropriate for our case of a deformable shape (or a shape in multiple poses): there is no static embedding based on which
extrinsic measures could be evaluated. We make use of the intrinsic formulation instead, and use our field d as directional guiding
input to this method. As suggested, one step of midpoint subdivision is performed on the resulting quad-dominant mesh in order
to yield a quad-only mesh.

7 Results
When performing comparisons of different approaches based on different metrics ga and gb in the following, we rescale these
metrics with a globally constant factor such that

∫
P det ga dA =

∫
P det gb dA. This leads to quad meshes of approximately equal

complexity (number of elements), allowing for meaningful assessment of the improvements in terms of approximation quality.

Key Pose Sets In Figures 8 and 7 we compare quad meshes optimized for a static geometry (pose P0 of the input) with quad
meshes optimized jointly for all given poses (two in Figure 7, three in Figure 8) with our method. The S-based metric was used
in these examples. The local shape approximation quality in terms of pointwise input mesh to quad mesh distance is visualized
over the surface.

pose P0

pose P1

Ours Standard
Ours
better

Standard
better

equal

Figure 7: Left: visualization of the difference in local shape approximation quality (pointwise input surface to quad mesh distance)
when comparing our method (metric gmax) and a standard, static method (effectively using metric g0 only). In green regions,
the mesh generated by the standard approach is better, in red regions, it is worse than our result. On P0 the differences are
minor, as expected. On P1, the mesh optimized for P0 using the standard, static approach (and then deformed to pose P1) has
significantly larger approximation error (red regions, especially on stretched and bent parts, such as knees, shoulders, elbows)
than the mesh optimized over both poses using our method. Right: the two quad meshes in pose P1; notice that long, stretched
quad elements (in particular in direction of strong curvature) are avoided by our method, thereby reducing approximation error
due to undersampling. It can also be observed how additional extraordinary vertices are introduced in order to facilitate the
required mesh density transitions.
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Figure 9: The shape approximation quality (in terms of Hausdorff distance, left column) and element quality (in terms of quad
corner angles, right column) of quad meshes during deformation according to given animation sequences (Squat, Crane), some
frames of which are depicted below the graphs. We compare our method (green) with a standard approach (blue) that optimizes
the mesh for frame 0 of the animation. See the text for more details on the algorithmic choices.

P0 P1 P2

Figure 8: Visualization of difference in local shape ap-
proximation quality (pointwise input surface to quad
mesh distance) between our method, optimizing for all
poses, and a method optimizing for a static reference
pose (P0) only. The corresponding quad meshes are de-
picted in Figure 1. Color coding as in Figure 7, i.e. in
red regions our method is better.

Animation Sequences In Figure 9 we consider the quality of quad
meshes undergoing deformation according to given animation se-
quences. We compare meshes generated by our proposed method, opti-
mized for the entire input animation sequences (using gmax), with quad
meshes generated for static pose P0 (as with traditional quad mesh gen-
eration methods, using g0). We used the S-based metric in this compar-
ison, and made use of orientation fields d computed from the principal
curvatures as described in [39]. As can be observed, the Hausdorff dis-
tance from the input model to the quad mesh is lower when using our
method, and the average element shape is better (element corner angles
closer to 90◦). Interestingly, in these examples this even holds for the
frame P0; we attribute this to the joint determination of the curvature-
based orientation constraints over the entire sequence (cf. Section 5)
in our method, which provides more stable, reliable guidance for the
model. Possibly, the typically higher number of extraordinary vertices
due to gmax also contributes to this effect.

Figure 10 shows a similar comparison based on animation sequences. However, for this experiment we used our method in
combination with the orientation guidance based on principal stretch directions proposed by [33], as detailed in Section 5.1. The
further improvement due to the use of our gmax in addition to this animation-aware orientation guidance becomes clear in this
experiment.

8 Limitations & Future Work
A high quality solution to the problem of determining suitable guidance fields d is desirable; those discussed in Section 5.1 are
not always satisfactory. When working with a single static model, manual input (such as stroke guidance [15]) can be reasonable,
but for multiple poses and even sequences this is impractical; automatic solutions are important in this context.

Finding an exact solution to the tight bounding metric problem (3) would certainly be of value; though we expect the practical
implications to be minor in the context at hand. On a related note, metrics that consider stretching and squeezing could be of
value in certain contexts; averages of gmax and an analogously defined gmin could provide benefits over a traditional gavg (1) here.

As discussed in Section 6, the introduction of additional extraordinary vertices is of benefit for individual mesh element quality.
Depending on the use case it is, however, likewise beneficial if the number of extraordinary vertices is small [4]. For use cases
that have a strong preference for meshes with a low number of extraordinary vertices, our method in combination with the chosen
meshing strategy [20] is likely not a viable choice, and so far no alternative automatic quad mesh generation method enables
explicit and practical continuous control over the trade-off between element quality and extraordinary vertex count. Progress in
this direction would thus certainly be of interest. Likewise no fully robust global parametrization based mesh generation technique
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Figure 10: The shape approximation quality (in terms of Hausdorff distance, left column) and element quality (in terms of quad
corner angles, right column) of quad meshes during deformation according to given animation sequences (Squat, Crane), some
frames of which are depicted. We compare meshes optimized for the standard Euclidean metric I of frame 1 (red graph) with
meshes optimized for this metric extremally combined over all frames using our method (orange graph). It can be observed that
in these examples the extremal metric reduces approximation error (left). As expected, the use of the S (shape-operator) metric
in combination with our approach (yellow graph) leads to further error reduction. The element quality (in terms of corner angles)
is best in the beginning of the sequences with the mesh optimized for frame 1 (red), while later the benefit of the extremal metric
(orange) shows. The use of S (yellow) naturally leads to less square elements by design; it rather targets low approximation error.
Note that the method leading to the red graph is conceptually equal to [33]—with the exception of the local technique [20] rather
than the global technique [5] being used for mesh generation in the end.

(that does not introduce additional extraordinary vertices) is available, but would be of interest to reliably achieve low numbers
of extraordinary vertices even with highly variable metrics.

It will be interesting to further explore the use of our method for different models of the same category (as opposed to
different poses of the same model) to obtain high quality generic quad meshes for shape categories, essentially by a form of
co-quadrangulation. Depending on the specific scenario, methods for non-rigid shape correspondence finding [24, 51], including
recent machine learning based variants [6], could play a central role in this for determining the diffeomorphisms between models.
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A Extremal Metric Approximation Bound
For a given tangent vector v, let i = argmaxN−1

i=0 g0i(v, v). Let

g0i = µaeae
ᵀ
a + µbebe

ᵀ
b , gmax = λadad

ᵀ
a + λbdbd

ᵀ
b

be expressions of the metrics in terms of their eigenvalues and eigenvectors. Then

gmax(v, v) = (dᵀav)2λa + (dᵀbv)2λb.

Noticing that λa/b = g0i(da/b, da/b) (cf. Equation (4)), we obtain

gmax(v, v) = (dᵀav)2g0i(da, da) + (dᵀbv)2g0i(db, db)

= (dᵀav)2
(
(eᵀada)2µa+(eᵀbda)2µb

)
+ (dᵀbv)2

(
(eᵀadb)

2µa+(eᵀbdb)
2µb
)

= (eᵀadad
ᵀ
av)2µa + (eᵀbdad

ᵀ
av)2µb + (eᵀadbd

ᵀ
bv)2µa + (eᵀbdbd

ᵀ
bv)2µb

=
(
(eᵀadad

ᵀ
av)2 + (eᵀadbd

ᵀ
bv)2

)
µa +

(
(eᵀbdad

ᵀ
av)2 + (eᵀbdbd

ᵀ
bv)2

)
µb.

We compare this to g′max(v, v) = g0i(v, v) = (eᵀav)2µa + (eᵀbv)2µb, by considering the coefficients of µa and µb. In particular, we
show in the following that these are related by(

(eᵀadad
ᵀ
av)2 + (eᵀadbd

ᵀ
bv)2

)
≥

1

2
(eᵀav)2

(and analogously for the coefficient of µb). From this it immediately follows that g′max(v, v)/gmax(v, v) < 2.
Due to orthonormality of da, db (dᵀada = dᵀbdb = 1 and dᵀadb = 0), we have eᵀadad

ᵀ
av + eᵀadbd

ᵀ
bv = eᵀa(dad

ᵀ
a + dbd

ᵀ
b )v = eᵀav.

Defining p = eᵀadad
ᵀ
av and q = eᵀadbd

ᵀ
bv, we thus only need to show that p2 + q2 ≥ 1

2
(p+ q)2 = 1

2
(p2 + q2) + pq to prove the above

inequality, or equivalently that p2 + q2 ≥ 2pq. One easily verifies that this holds for any p, q ∈ R.
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