
Galaxy Maps: Localized Foliations for Bijective Volumetric Mapping
STEFFEN HINDERINK and MARCEL CAMPEN, Osnabrück University, Germany

(a)

(b)

(c) (d) (e)

input object

target domain inversions galaxy

star

Fig. 1. Our method takes as input a 3D object (a) together with a bijective continuous map of its boundary onto the boundary of an arbitrary convex or
star-shaped domain (b). It outputs a bijective continuous volumetric map of the interior, respecting the prescribed boundary map. The core algorithm can be
applied either globally, or locally to effectively repair defects (c, red) of non-bijective maps generated by existing non-reliable techniques (here a 3D Tutte
embedding). The local approach identifies a set of stars, star-shaped sub-domains, collectively referred to as galaxy (d, blue), that enclose all defects. The
algorithm is then efficiently applied star by star (e), so as to locally adjust the map by a bijective replacement while maintaining continuity.

A method is presented to compute volumetric maps and parametrizations
of objects over 3D domains. As a key feature, continuity and bijectivity are
ensured by construction. Arbitrary objects of ball topology, represented as
tetrahedral meshes, are supported. Arbitrary convex as well as star-shaped
domains are supported. Full control over the boundary mapping is provided.
The method is based on the technique of simplicial foliations, generalized to
a broader class of domain shapes and applied adaptively in a novel localized
manner. This increases flexibility as well as efficiency over the state of the
art, while maintaining reliability in guaranteeing map bijectivity.

CCS Concepts: • Computing methodologies → Mesh models; Volumet-
ric models.

Additional Key Words and Phrases: volumetric parametrization, homeomor-
phism, star-shaped, foliation, shelling, tetrahedral mesh

ACM Reference Format:
Steffen Hinderink and Marcel Campen. 2023. Galaxy Maps: Localized Folia-
tions for Bijective Volumetric Mapping. ACM Trans. Graph. 42, 4, Article 129
(August 2023), 16 pages. https://doi.org/10.1145/3592410

Authors’ address: Steffen Hinderink, sthinderink@uos.de; Marcel Campen, campen@
uos.de, Osnabrück University, Germany.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3592410.

1 INTRODUCTION
Maps between 3D objects as well as volumetric parametrizations
over 3D domains are important ingredients in numerous geomet-
ric processing and analysis tasks. A common requirement, besides
continuity, is that of bijectivity. Application scenarios where this
is of relevance include volumetric mesh generation [Brückler et al.
2022a,b; Mandad et al. 2022; Nieser et al. 2011; Pietroni et al. 2022],
spline modeling [Martin et al. 2008; Zhang et al. 2012], registration,
fitting, and comparison [Iyengar et al. 2012; Martin et al. 2012; Wang
et al. 2004], structure or texture transfer [Abulnaga et al. 2023; Li
et al. 2007; Lin et al. 2015; Schüller et al. 2013], and interpolation or
morphing [Alexa et al. 2000; Xia et al. 2010], to name a few. In these
bijectivity (or local or global injectivity) is at least strongly desired,
in many cases mandatory to enable reliable processing.
In a 2D setting, convex combination mapping, also called Tutte

embedding [Floater 1997; Tutte 1963], is used in countless appli-
cations to establish maps of triangle meshes that are bijective by
construction, often as initialization subject to further optimization.
It is well known that this does not extend to 3D [Floater and Pham-
Trong 2006], except for a very restricted class of tetrahedral meshes
of, unfortunately, little practical relevance [Alexa 2023].

Discrete conformal mapping is also efficiently possible in 2D due
to recent developments [Campen et al. 2021; Gillespie et al. 2021].
Also this avenue does not extend to 3D; in particular, the space of
conformal maps is too restrictive to be useful in a generic 3D setting.
Instead, a variety of best-effort approaches are commonly used

when it comes to the 3D mapping or parametrization problem (see
Section 2). These may or may not succeed in yielding a bijective
map on a case by case basis. An exception is a method based on
so-called simplicial foliations [Campen et al. 2016], which comes

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

HTTPS://ORCID.ORG/0000-0001-6873-4420
HTTPS://ORCID.ORG/0000-0003-2340-3462
https://doi.org/10.1145/3592410
https://orcid.org/0000-0001-6873-4420
https://orcid.org/0000-0003-2340-3462
https://doi.org/10.1145/3592410

129:2 • Steffen Hinderink and Marcel Campen

with guarantees regarding result validity in terms of continuity and
bijectivity. It bears strong restrictions, however, regarding supported
mapping domain shapes, and has limitations in terms of efficiency
in comparison to modern best-effort techniques.

1.1 Contribution
Adopting the central idea of this previous approach [Campen et al.
2016], i.e. reliably constructing bijective volumetric maps using foli-
ations, we make two key contributions generalizing and improving
it in particular with respect to flexibility and efficiency:
First, the original work supports only two domains, the sphere

and the cube. The latter case furthermore has the downside of not
supporting full control over the boundarymapping. Ourmethod sup-
ports mapping of arbitrarily shaped ball-topology 3D objects onto
arbitrary convex and (even more generally) arbitrary star-shaped
domains while offering full support for boundary constraints.

Second, we describe an escalating (multi-tiered) strategy for map
construction. Instead of globally, it applies the foliation-based tech-
nique in a localized manner, adaptively treating bijectivity issues
of other methods used for initialization. This leads to significant
benefits in terms of efficiency, even reducing run time by multiple
orders of magnitude in some cases.

While already useful on their own, the true benefit actually comes
into effect when combining these two techniques and their advan-
tages. Concretely, the support for star-shaped domains enables a
particularly efficient form of localization. In turn, the escalating
localized approach increases the practical feasibility of treating com-
plex cases and complex domains. Fig. 1 illustrates the method on an
example mapping problem.
The method is carefully designed to be implementable in exact

rational arithmetic, so as to enable full reliability—notwithstanding
that truncation of the resulting map to standard floating point num-
bers may invalidate guarantees, as discussed further in Section 5.1.1.

We remark that our focus herein is on reliably offering bijectivity,
for the concrete setting of ball-topology objects and star-shaped
domains, rather than matching or even outperforming alternative
non-guaranteed approaches in terms of generality or speed.
An open source implementation of the method is available at

https://github.com/SteffenHinderink/GalaxyMaps.

2 RELATED WORK
We focus our discussion on the discrete 3D volumetric setting and
on the aspect of bijectivity. In this realm, pertinent methods can
roughly be classified into three categories:

• Methods that optimize maps, aiming for bijectivity, either as
a byproduct of distortion minimization or dedicatedly.

• Methods that optimize maps, maintaining bijectivity, assum-
ing a bijective initialization.

• Methods that constructively establish a bijective map in an
explicit manner.

2.1 Aiming for Bijectivity
The main cause of non-bijectivity are inversions, i.e. parts of the
mesh fold over under the map, their images having negative (or
zero) volume. This is often accompanied by high map distortion.

Optimizing a map for low distortion can thus lead to inversions
vanishing. Depending on the concrete distortion objective employed
this can bemore or less likely [Aigerman and Lipman 2013; Kovalsky
et al. 2014], but there generally is no guarantee. Recently a number
of methods have been proposed that, by modifying or augmenting
distortion objectives, put a stronger focus particularly on inversion
removal or prevention [Abulnaga et al. 2023; Du et al. 2020, 2022;
Garanzha et al. 2021; Naitsat et al. 2020; Overby et al. 2021; Poya
et al. 2023; Su et al. 2019]—with, in some cases, impressive success
rates, but still without a guarantee. As demonstrated in Section 7
this shortcoming is not just of hypothetical nature.

Furthermore, untangling methods [Escobar et al. 2003] from the
field of mesh generation are related in that they can be applied to the
mesh’s image in parameter space under some initial non-injective
map, aiming to remove inversions. Noteworthy in this context is
the method of Toulorge et al. [2013] which, like our method, uses a
localized approach, albeit in a heuristic manner, without a careful
selection that would ensure feasibility; it furthermore is based on
nonconvex numerical optimization without a success guarantee,
whereas we use a reliable constructive method.

2.2 Maintaining Bijectivity
In case a bijective initial map is available, barrier terms can be
included in objective functions employed in subsequent processes
that, e.g., optimize for lower distortion or improved alignment [Fu
et al. 2015; Rabinovich et al. 2017; Schüller et al. 2013; Smith et al.
2019]. These prevent the optimization from inverting any element,
by infinitely penalizing any path leading into such a state.
In case the domain shape is subject to optimization as well (free

boundary setting) global overlaps can additionally be prevented ex-
plicitly [Fang et al. 2021; Jiang et al. 2017; Smith and Schaefer 2015;
Su et al. 2020], so as to maintain global (not just local) injectivity,
and thereby bijectivity onto the resulting domain. All these tech-
niques require a bijective initialization to output a bijective map;
one can try to obtain it using one of the above methods, or employ a
constructive method that builds a valid starting point, as discussed
in the following.

2.3 Establishing Bijectivity
In the 2D setting, an important role is played by methods that, in-
stead of focusing on application-specific map quality in terms of
properties like distortion, dedicatedly target bijectivity. Reliable dis-
crete harmonic [Floater 1997; Tutte 1963] and discrete conformal
[Campen et al. 2021; Gillespie et al. 2021] techniques are prime
examples. Their results are rarely used right away, but considered
initializations for subsequent bijectivity maintaining optimization.
In the 3D setting, to the best of our knowledge, there is a single
method [Campen et al. 2016] (and concurrent work [Nigolian et al.
2023]) that falls into this category; this is in line with a recent survey
[Fu et al. 2021] that, regarding the 3D setting, also only mentions this
one work. This method is based on the idea of computing a so-called
foliation, a partition into a two-parameter family of curves, of the ob-
ject to be parametrized. This allows reducing the 3D parametrization
problem to simpler 2D and trivial 1D parametrization problems, as
detailed in Section 4.2. Such foliations (or fibrations) have also been

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

https://github.com/SteffenHinderink/GalaxyMaps

Galaxy Maps: Localized Foliations for Bijective Volumetric Mapping • 129:3

[𝑀] 𝑋

Fig. 2. 2D illustration of a foliation of an (arbitrary, disk-topology) object
[𝑀] and a (straight-line) foliation of a star-shaped domain 𝑋 . Once these
foliations (consisting of curves or lines called leaves) are constructed, and
a boundary map𝜓 : 𝜕 [𝑀] → 𝜕𝑋 is prescribed, a bijection Ψ : [𝑀] → 𝑋
can be defined in a careful leaf-by-leaf manner.

used in related contexts [Cohen and Ben-Chen 2019; Huynh and
Gingold 2015; Jüttler et al. 2019; Trautner et al. 2021]. Our method
builds on the underlying idea, generalizing and improving it.

3 OVERVIEW
Before diving into the technical details, let us delineate the proposed
method on an intuitive level.

Input: The input to our method is a tetrahedral mesh𝑀 , discretiz-
ing a 3D object [𝑀] ⊆ R3 that is topologically a ball, together with
a bijective continuous boundary map 𝜓 : 𝜕[𝑀] → 𝜕𝑋 ⊆ R3, i.e. a
prescription of the desired image of its surface. We only require the
thus prescribed domain 𝑋 to be star-shaped (which in particular
includes any convex domain), as detailed in Section 4.

Output: The result is a bijective continuous map Ψ : [𝑀] → 𝑋 ,
also referred to as parametrization of 𝑀 over the domain 𝑋 . This
map can be output either as an opaque function that can be evaluated
for any point 𝑝 ∈ [𝑀], or in a piecewise linear manner, i.e. as a
set of mapping coordinates ((𝑢, 𝑣,𝑤)-coordinates per vertex) on (a
refined version of) the mesh𝑀 .

Algorithm: We construct a discrete radial foliation of [𝑀], based
on a shelling of𝑀 , using the technique of Campen et al. [2016]. See
Fig. 2 for an intuitive illustration; a precise definition of these con-
cepts follows in Section 4.2. In addition, a point 𝑥0 ∈ 𝑋 is computed
such that the line segments from 𝑥0 to all points in 𝜕𝑋 form a radial
foliation of 𝑋 ; by star-shapedness, it is guaranteed to exist. Via the
surface map𝜓 , the curves and lines forming the two foliations are
put into one-to-one correspondence. This correspondence can then
be leveraged to, in combination with suitably constructed curve
to line maps, define a complete continuous bijection between [𝑀]
and𝑋 . The details of this algorithm are described in Section 5. It can
already be considered a solution to the targeted problem: It produces
the desired output exactly as defined above. However, instead of
applying it directly, we propose the following more efficient method,
which makes use of this algorithm to solve subproblems only.

Method: When best-effort approaches (see Section 2.1), including
the simple Tutte embedding approach, fail in computing a map
Φ : [𝑀] → 𝑋 that is bijective, they do not yield nothing, but a
non-bijective map. Violations of bijectivity often are local in these

maps. Our method takes such an imperfect map Φ, virtually cuts
out carefully chosen small pieces of [𝑀] and 𝑋 such that on the
remainder the map Φ acts bijectively. In Fig. 1 these pieces are
highlighted for an example case. The above algorithm is then applied
per piece, subject to boundary constraints that ensure continuity
between the resulting piece map and the restricted global map Φ.
The union of all these maps then forms the desired bijection Ψ. The
description of this method follows in Section 6.

For practical purposes wemay even go a step further and establish
an escalating (multi-tier) mapping strategy: Start by applying a quick
method such as Tutte embedding; if the result is bijective, output this
map. Otherwise, escalate to the next tier: Apply a more advanced
method (to the initial non-bijective map) that aims for inversion
removal, e.g. those discussed in Section 2.1, possibly with a fixed
time budget; if the result is bijective, output this map. Finally, if
there are still bijectivity issues, apply our (computationally more
demanding) method to fix the remaining local issues of the previous
tier’s result, reliably yielding a bijective map in the end in any case.

4 BACKGROUND

4.1 Meshes
For the purpose of this article, a tetrahedral mesh is a pure geometric
simplicial complex in 3D, a triangle mesh the same in 2D. Let𝑀 =

𝑉 ·∪ 𝐸 ·∪ 𝐹 ·∪𝐶 be a tetrahedral mesh with 𝑉 , 𝐸, 𝐹 , 𝐶 being the sets
of simplices that are its vertices, edges, triangles, and tetrahedra,
respectively, each being a compact subset of R3. The closure ⟨·⟩ of
a subset of simplices is the smallest simplicial complex containing
them, i.e. for each contained simplex it also contains all simplices
that form its faces; in particular𝑀 = ⟨𝐶⟩.

For formal precision, we distinguish the mesh𝑀 (a collection of
simplices) from its carrier [𝑀] = ⋃

𝑐∈𝐶 𝑐 (the subset of R3 occupied
by it). The surface 𝜕𝑀 of𝑀 is the closure of those triangles in 𝐹 that
are faces of only one tetrahedron. This surface is a triangle mesh,
and its carrier [𝜕𝑀] = 𝜕[𝑀].
Our method assumes as input a tetrahedral mesh 𝑀 such that

[𝑀] is 3-manifold with a simply-connected 2-manifold boundary
𝜕[𝑀] of genus 0, i.e. it has ball topology.

4.2 Foliations & Shellings
A foliation F is an (infinite) partition of a manifold into submani-
folds [Moerdijk and Mrčun 2003]. We are here concerned in partic-
ular with the case of partitioning a 3-manifold into 1-manifolds, i.e.
curves. These curves are called leaves of the foliation. We will make
use of radial foliations, in which all leaves start at the boundary (i.e.
the surface) and converge to a common point 𝑝0, called the center of
the foliation, in the interior. Formally, in this case the curves foliate
the 3-manifold with the center point removed.
As shown by Campen et al. [2016], in the discrete setting of a

tetrahedral mesh, a piecewise linear foliation can conveniently be
represented by a piecewise constant direction (i.e. unit vector) field,
constant per tetrahedron. The leaves are formed by the direction
field’s integral curves, as illustrated in Fig. 3. It was shown that there
is a sufficient condition of combinatorial kind that allows for the
generation of direction fields whose integral curves actually form
a partition and thereby imply a foliation. For radial foliations this

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

129:4 • Steffen Hinderink and Marcel Campen

𝑑𝑐1

𝑑𝑐2

𝑑𝑐3
𝑑𝑐4𝑑𝑐5

𝑑𝑐6
𝑑𝑐7

𝑑𝑐8
𝑑𝑐9

𝑑𝑐10
𝑝0

Fig. 3. Illustration of the piecewise linear foliation implied by a piecewise
constant vector field in a 2D setting on a triangle mesh.

boils down to finding a so-called shelling, an order 𝑐1, 𝑐2, . . . , 𝑐 |𝐶 | of
the tetrahedra of the tetrahedral mesh. Such orders are guaranteed
to exist (possibly after subdivision) and it was demonstrated that
in practice a simple greedy algorithm seems sufficient to find one,
except for an example contrived by Furch [1924]. Formally, to have
a provably complete approach, a fallback to an exhaustive search
would need to be added. But also in our experiments on tens of
thousands of problem instances we did not encounter a case where
the greedy algorithm was insufficient.
Algorithm 1 lists this algorithm, simplified to our radial setting.

In this a tetrahedron is to be considered free if it has a triangle face
in the surface 𝜕⟨𝐶⟩ and removing it from𝐶 leaves [⟨𝐶⟩] 3-manifold.
In the end, the implied piecewise linear foliation is easily extended
into the final tetrahedron 𝑐 |𝐶 | that then contains the foliation’s cen-
ter 𝑝0. Note that the original version of this algorithm [Campen
et al. 2016, Alg. 1] is more complex as it additionally supports Carte-
sian foliations, which requires handling of ‘parallel’ special cases
as well as ensuring the manifoldness also of the complement of 𝐶
throughout—because a bishelling (rather than a shelling) is required.
Here we can restrict to the simpler case, while at the same time
arriving at a more general method in the following (Section 5).

Algorithm 1: Simplicial Radial Foliation Construction
Input: Tetrahedral mesh𝑀 = 𝑉 ·∪ 𝐸 ·∪ 𝐹 ·∪𝐶
Output: Direction field 𝑑 implying a radial foliation
for 𝑖 = 1, . . . , |𝐶 | − 1

Select a free tetrahedron 𝑐𝑖 ∈ 𝐶
Choose direction 𝑑𝑐𝑖 such that for each of the triangle faces 𝑓 of
𝑐𝑖 with outwards pointing normal 𝑛

• ⟨𝑑𝑐𝑖 , 𝑛⟩ < 0 if 𝑓 ∈ 𝜕 ⟨𝐶 ⟩
• ⟨𝑑𝑐𝑖 , 𝑛⟩ > 0 otherwise

𝐶 = 𝐶 \ {𝑐𝑖 }
return 𝑑

4.3 Star-Shapes
A set 𝑋 ⊆ R𝑘 is star-shaped if there exists a point 𝑥0 ∈ 𝑋 , such that
for every 𝑥 ∈ 𝑋 the (open) line section {_𝑥 + (1 − _)𝑥0 : _ ∈ (0, 1)}
is contained in 𝑋 \ 𝜕𝑋 , the interior of 𝑋 . In other words, from 𝑥0
every point in 𝑋 is visible, and 𝑥0 is referred to as a guard of 𝑋 . The

𝑥0

𝑥0

𝑥0
𝑥0

Fig. 4. 2D examples of star-shaped sets and their kernels. Natural foliations
for choices of guards are illustrated by a few selected leaves.

set of all guards of a set is called the set’s kernel. Fig. 4 illustrates the
concept. Note that there also is a weak notion of star-shapedness
(only requiring line section containment in 𝑋) but we herein only
use the above strict notion. Also note that every non-degenerate
convex set is star-shaped—in this case the kernel is the entire set.
If 𝑋 has a piecewise linear boundary—the case relevant for our

purposes—note that 𝑋 is star-shaped with respect to guard 𝑥0 iff
𝑛𝑖

T𝑥0 < 𝑛𝑖
T𝑎𝑖 for all outwards pointing normal vectors 𝑛𝑖 of the

linear boundary pieces, where 𝑎𝑖 is a point on the respective piece.
For a star-shaped set 𝑋 and a fixed guard point 𝑥0 we define the

natural radial foliation with center 𝑥0 as the set of all (half-open)
visibility line segments {{_𝑥 + (1 − _)𝑥0 : _ ∈ (0, 1]} : 𝑥 ∈ 𝜕𝑋 }.

5 BIJECTIVE STAR-SHAPED MAPPING
We now turn to our algorithm for the construction of a continuous
bijection between [𝑀] and a star-shaped domain 𝑋 .
We follow the idea of Campen et al. [2016] and use a foliation

F𝑀 of [𝑀]. Note that their method, however, does not solve our
problem: By interpreting per-point values deduced from the foliation
as Cartesian or polar coordinates, it maps specifically to Cartesian
product domains, in particular 𝑆2×[0, 1] (ball map) and [0, 1]2×[0, 1]
(cube map)—and in the latter case only part of the boundary map
can be controlled. We instead more flexibly want to enable mapping
onto arbitrary convex and star-shaped domains 𝑋 ⊆ R3 together
with full boundary map prescription capabilities.

To this end, in addition to a radial foliationF𝑀 of [𝑀], we consider
a natural foliation F𝑋 of 𝑋 , centered at 𝑥0, as in Fig. 5. Due to the
radial nature, the boundary 𝜕[𝑀] is a section of the foliation F𝑀 (i.e.
it has a unique intersection with every leaf) and 𝜕𝑋 is a section of
the foliation F𝑋 . Therefore, the given continuous bijective boundary
map𝜓 : 𝜕[𝑀] → 𝜕𝑋 establishes a bijection between the leaves of
F𝑀 and the leaves of F𝑋 , which we exploit in the following.

5.1 Map Definition
For a point 𝑝 ∈ [𝑀] (except the foliation center 𝑝0) let 𝑙 (𝑝) be
the unique leaf of foliation F𝑀 that 𝑝 lies on, and 𝑠 (𝑝) the unique
point where this leaf 𝑙 (𝑝) intersects the boundary 𝜕[𝑀], i.e. 𝑠 (𝑝) =
𝑙 (𝑝) ∩ 𝜕[𝑀], see Fig. 5. For 𝑝 = 𝑝0 an arbitrary leaf can be picked.
The leaf of F𝑋 corresponding to 𝑙 (𝑝) is the one that intersects the
point 𝜓 (𝑠 (𝑝)). It is the line segment between 𝑥0 and 𝜓 (𝑠 (𝑝)). Let
𝑡 (𝑝) ∈ [0, 1] be the relative position (ratio of lengths) of 𝑝 along

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

Galaxy Maps: Localized Foliations for Bijective Volumetric Mapping • 129:5

𝑝0

𝑝

𝑠 (𝑝)

𝑡 (𝑝)
𝑙 (𝑝)F𝑀

𝑥0

Ψ(𝑝)
𝜓 (𝑠 (𝑝))

F𝑋

[𝑀] 𝑋Ψ

𝜕[𝑀] 𝜕𝑋𝜓

Fig. 5. Defining a bijection (see Section 5.1) between two objects based on
compatible foliations F𝑀 , F𝑋 and a bijective boundary map𝜓 .

𝑙 (𝑝), from 0 at the center 𝑝0 to 1 at the boundary 𝜕[𝑀]. With this,
given the surface map𝜓 , we define our volume map Ψ as

Ψ : [𝑀] → 𝑋 (1a)
𝑝 ↦→ 𝑡 (𝑝)𝜓 (𝑠 (𝑝)) + (1 − 𝑡 (𝑝))𝑥0, (1b)

with 𝑠 and 𝑡 as defined above. Note that the choice of leaf for 𝑝 = 𝑝0
does not matter, due to 𝑡 (𝑝0) = 0, i.e. Ψ(𝑝0) = 𝑥0 in either case. The
key deviation in this definition from that of Campen et al. [2016] is
that we do not interpret 𝑡 (𝑝) as radial coordinate in a polar system
of a ball, but effectively as barycentric coordinate on a leaf of a
natural foliation. Note that, in theory, the map could equivalently
be defined as a map to a ball composed with a nonuniform radial
scaling. This would involve calculations with irrational numbers
though, defeating a key property of the foliation based approach:
implementability with exact rational arithmetic for numerical safety.
With our definition we can carry this over to our more general
problem setting, as discussed further below.

Lemma 5.1. The map Ψ, defined in (1), is bijective and continuous.

Proof. Let 𝑝1, 𝑝2 ∈ [𝑀] with Ψ(𝑝1) = Ψ(𝑝2). For injectivity, we
need to show 𝑝1 = 𝑝2. If Ψ(𝑝1) =Ψ(𝑝2) =𝑥0, then 𝑡 (𝑝1) = 𝑡 (𝑝2) = 0
because 𝑥0 ≠ 𝜓 (𝑠) ∈ 𝜕𝑋 for all 𝑠 ∈ 𝜕[𝑀], and therefore 𝑝1 = 𝑝2 = 𝑝0.
Else 𝑡 (𝑝1)𝜓 (𝑠 (𝑝1)) + (1−𝑡 (𝑝1))𝑥0 = 𝑡 (𝑝2)𝜓 (𝑠 (𝑝2)) + (1−𝑡 (𝑝2))𝑥0 ≠
𝑥0, and therefore 𝜓 (𝑠 (𝑝1)) =

𝑡 (𝑝2)
𝑡 (𝑝1)𝜓 (𝑠 (𝑝2)) +

(
1 − 𝑡 (𝑝2)

𝑡 (𝑝1)
)
𝑥0. This

means,𝜓 (𝑠 (𝑝1)) ∈ 𝜕𝑋 lies on the line segment spanned by 𝑥0 and
𝜓 (𝑠 (𝑝2)) ∈ 𝜕𝑋 . As this line segment intersects 𝜕𝑋 only once by
star-shapedness,𝜓 (𝑠 (𝑝1)) = 𝜓 (𝑠 (𝑝2)), and therefore 𝑡 (𝑝1) = 𝑡 (𝑝2)
and, by bijectivity of𝜓 , 𝑠 (𝑝1) = 𝑠 (𝑝2). We conclude 𝑝1 = 𝑝2. Hence,
Ψ is injective.
To show surjectivity, let 𝑥 ∈ 𝑋 . For 𝑥 = 𝑥0, we have Ψ(𝑝0) = 𝑥0.

For 𝑥 ≠ 𝑥0 let 𝑥 ′ ∈ 𝜕𝑋 the intersection of the ray from 𝑥0 through
𝑥 with 𝜕𝑋 , unique by star-shapedness of 𝑋 . Let 𝑡 = ∥𝑥−𝑥0 ∥/∥𝑥 ′−𝑥0 ∥
and 𝑠 = 𝜓−1 (𝑥 ′). This inverse exists because 𝜓 is bijective. Then,
the point 𝑝 at relative position 𝑡 on the leaf of F𝑀 that contains
surface point 𝑠 is a point for which Ψ(𝑝) = 𝑥 . Hence, Ψ is surjective.
Since Ψ is injective and surjective, it is bijective.
Regarding continuity, Campen et al. [2016] show that 𝑠 and 𝑡

are continuous. The prescribed surface map 𝜓 is continuous by
assumption. The map Ψ, consisting of compositions, products, and
sums of these continuous functions, hence is continuous. □

5.1.1 Map Computation. After constructing the foliation F𝑀 (or
rather the foliation-defining direction field 𝑑 , using Algorithm 1),
the map Ψ at a point 𝑝 can be evaluated by first tracing the leaf
through 𝑝 to determine 𝑠 (𝑝) and 𝑡 (𝑝), just as described in [Campen
et al. 2016], and then evaluating (1). Also the inverse Ψ−1 can easily
be evaluated: For a point 𝑥 ∈ 𝑋 , project it onto 𝑥 ′ ∈ 𝜕𝑋 along
the ray from 𝑥0 through 𝑥 , and let 𝑡 be the relative distance of this
projection. Let 𝑠 = 𝜓−1 (𝑥 ′) and trace the leaf of F𝑀 starting at 𝑠
until the center 𝑝0. Then determine the point on this leaf that lies
at relative length 𝑡 . This point is 𝑝 = Ψ−1 (𝑥).

Numerics. The above constructions (as well as those in the follow-
ing) were designed to rely exclusively on basic arithmetic operators.
Calculations therefore remain within the rational numbers Q. This
allows implementing the algorithm using exact arithmetic based
on rational number types, precluding the interference of numerical
inaccuracies with the algorithm’s correctness. Of course, if one trun-
cates the output map to, e.g., standard floating point numbers, tiny
inversions on the machine precision level may emerge nevertheless.

Distortion. Note that the main goal of the algorithm is to establish
a map such that the binary criterion of bijectivity is reliably satisfied.
For the consideration of additional soft objectives such as minimal
distortion there are various options, from controlling the degrees of
freedom of the foliation construction over bijectivity maintaining
map optimization starting from the established map (cf. Section 2.2)
as discussed by Campen et al. [2016]. This aspect, largely orthogonal
to the bijectivity question, is not a focus of the present work.

Domain Class. Note that the approach could be applied beyond
the class of star-shaped domains as well. In essence, instead of a
natural foliation of a star-shaped domain𝑋 , one could use a foliation
computed, analogously to F𝑀 , on a tetrahedral mesh of a general
domain𝑋 . Definition (1) would be updated to map onto the leaves of
that foliation instead of onto the straight line segments of the natural
foliation of a star-shaped 𝑋 . A key reason for restricting to star-
shaped domains herein is that this enables obtaining a piecewise-
linear version of Ψ more easily, exploiting the straightness of the
leaves in 𝑋 , as detailed in the following.

5.2 Piecewise Linearization
Depending on the application context it may be of benefit or even
required to have a piecewise linear map, a map that can be repre-
sented by means of per-vertex map coordinates on a tetrahedral
mesh (𝑀 , or a refined version thereof). The map Ψ does not possess
this property, it is not linear per tetrahedron. We can easily obtain a
piecewise linear approximation by evaluating Ψ at the vertices of𝑀
and defining a map through linear interpolation of these vertex map
coordinates over the tetrahedra. Unfortunately, this approximation,
while maintaining continuity, may break bijectivity.

For the case of a foliation based map to the unit ball domain,
Campen et al. [2016] show that there is a refined version 𝑀 ′ of
mesh𝑀 , such that the above per-tetrahedron linearization of Ψ on
𝑀 ′ yields an approximation that maintains bijectivity. The refine-
ment is of nested kind, i.e. for each tetrahedron of𝑀 there is a set of
one or more tetrahedra in𝑀 ′ that together occupy the same space.
This keeps the relation to 𝑀 simple. In appendix A we show that

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

129:6 • Steffen Hinderink and Marcel Campen

Φ Ψ

(a) (b) (c) (d) (e)

Fig. 6. Overview of our method. (a) An imperfect initial map Φ inverts one element (red). (b) A star (blue) starts growing at the inverted element. (c) The star
finished growing, the guard is the insphere center of the kernel (cyan). (d) Inside the star, a bijective replacement map is computed using foliations. (e) After
local refinement, the maps in combination form the desired global bijection Ψ.

this result applies to our setting as well and provide implementation
details regarding the construction of the refined mesh.

Necessity of Refinement. Any kind of modification of the origi-
nal mesh structure, whether by nested refinement or of different
kind, may seem like a downside, as it may increase efforts to work
with the resulting map in application contexts. Note, however, that
refinement can be inevitable, depending on the interplay of the
mesh structure of 𝑀 , the shape of 𝑋 , and the nature of 𝜓 , when
restricting to piecewise linear maps, cf. Fig. 7. Hence, methods that
keep the mesh structure fixed can never be fully reliable in achiev-
ing bijectivity. In this sense the ability to systematically refine is a
positive feature of the foliation based method. Of course it is desir-
able to keep refinement to a minimum. In this regard the described
refinement procedure has significant room for improvement, posing
interesting challenges for future work. As a great side effect of our
main method described in the following Section 6, making use of
the above described mapping algorithm in a local manner only, the
amount of (superfluous) refinement is already heavily reduced.

6 GALAXY OF STARS
Assume a continuous map Φ of 𝑀 that is linear per tetrahedron
is given, such that its surface restriction Φ| [𝜕𝑀] is bijective (and
orientation-preserving) onto domain boundary 𝜕𝑋 . In the interior,
the map may be noninjective, containing degeneracies and inver-
sions. Such maps can easily be obtained using a variety of methods,

[𝑀]
Φ

𝑋

Fig. 7. Simple example of a mesh with five tetrahedra (left) with a prescribed
boundary map (right) that does not permit a piecewise linear bijection
(unless the mesh is refined); the inversion (red) is inevitable. Note that of
the two inner triangles (cyan), one is horizontal, one vertical.

for example by a simple convex combination mapping, also called
3D Tutte embedding [Floater and Pham-Trong 2006].
Let 𝑐 ∈ 𝐶 be a tetrahedron and 𝑣𝑖 for 𝑖 ∈ {1, 2, 3, 4} its vertices,

with index ordering chosen such that

vol(𝑐) = 1
6 det

(
𝑣1 − 𝑣4, 𝑣2 − 𝑣4, 𝑣3 − 𝑣4

)
> 0.

We say that 𝑐 is inverted by Φ if its image volume is non-positive:

volΦ (𝑐)B
1
6 det

(
Φ(𝑣1)−Φ(𝑣4), Φ(𝑣2)−Φ(𝑣4), Φ(𝑣3)−Φ(𝑣4)

) ≤ 0.

The map Φ is bijective iff it inverts no tetrahedra [Aigerman and
Lipman 2013, Thm. 3]. In non-bijective maps computed by methods
that (implicitly or explicitly) aim for bijectivity but do not guarantee
it, inversions are often sparsely distributed local effects. The central
idea of our method is to identify parts of the map that encompass
these defects of Φ, and per part apply the algorithm from Section 5
to compute a bijective replacement map that can be seamlessly
integrated into Φ. In the end, the map is globally bijective. The parts
need to be chosen such that their image boundary is star-shaped for
the algorithm to be applicable. We therefore call them stars in the
following. The set of all stars required forms a galaxy. Fig. 6 gives
an overview of the method.

In more detail, a star 𝑆 is a submesh of𝑀 satisfying the following
star conditions, where 𝜙𝑆 ≔ Φ| [𝜕𝑆] denotes its boundary map:

• [𝑆] has ball topology,
• 𝜙𝑆 ([𝜕𝑆]) bounds a star-shaped set,
• 𝜙𝑆 is injective, thus bijective onto 𝜙𝑆 ([𝜕𝑆]),
• 𝜙𝑆 is orientation-preserving.

Then, mesh 𝑆 together with boundary map 𝜙𝑆 form a valid input
instance for the mapping algorithm from Section 5. Our goal there-
fore is to determine a galaxy G such that all tetrahedra inverted
by Φ are contained in its stars.
A galaxy of minimal size (in terms of the number of tetrahedra

contained in its stars) would be ideal for reasons of efficiency. How-
ever, even for a single inverted tetrahedron, no polynomial-time
algorithm is known to determine its smallest star-shaped superset
of tetrahedra. We therefore employ an efficient greedy strategy,
incrementally growing stars starting from seeds.

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

Galaxy Maps: Localized Foliations for Bijective Volumetric Mapping • 129:7

6.1 Growing Stars
Conceptually, starting from a single tetrahedron 𝑐 (inverted by Φ)
we grow a star 𝑆∗ by incrementally conquering adjacent tetrahedra
one-by-one until the star conditions are satisfied (Section 6.1.1). For
the selection of the next tetrahedron 𝑐∗ to be conquered we employ
a heuristic (Section 6.1.2). Note that this may also include inverted
tetrahedra, i.e. one star can cover multiple of these. This is repeated,
spawning further stars where necessary, until all inverted tetrahedra
are covered. Algorithm 2 summarizes the overall procedure.

Algorithm 2: Galaxy Computation
Input: Tetrahedral mesh𝑀 with (possibly non-bijective) map Φ,

linear per tetrahedron
Output: Galaxy G
G = ∅
for each inverted tetrahedron 𝑐 ∈ 𝐶

if 𝑐 ∉ 𝑆 for all 𝑆 ∈ G ⊲ 𝑐 not yet covered
𝑆∗ = ⟨{𝑐 }⟩ ⊲ spawn star at seed 𝑐

do ⊲ growing

Choose next tetrahedron 𝑐∗ by heuristic
𝑆∗ = ⟨𝑆∗ ∪ {𝑐∗ }⟩
if 𝑐∗ ∈ 𝑆 for any 𝑆 ∈ G ⊲ star collision

𝑆∗ = ⟨𝑆∗ ∪ 𝑆 ⟩ ⊲ absorb other star

G = G \ {𝑆 }
while 𝑆∗ violates the star conditions
G = G ∪ {𝑆∗ }

return G

Termination. Assuming the domain 𝑋 of Φ is star-shaped, star
growing will always terminate with success: In the worst case, a
star will grow to 𝑆∗ = 𝑀 , which satisfies the star conditions. In this
case, with G = {𝑀}, the method effectively degenerates to a direct
global application of the mapping algorithm from Section 5.

Star Collisions. If a growing star 𝑆∗ collides with another star
𝑆 ∈ G, in the sense that the to be conquered 𝑐∗ is already included
in 𝑆 , we let 𝑆∗ absorb 𝑆 by setting 𝑆∗ = ⟨𝑆∗ ∪ 𝑆⟩ and G = G \ {𝑆}.
This ensures that in the end no two stars overlap, i.e. 𝑆1 ∩ 𝑆2 does
not contain any tetrahedra for 𝑆1, 𝑆2 ∈ G, 𝑆1 ≠ 𝑆2. Note, however,
that they may touch, i.e. may share vertices, edges, or triangles.

Inversion Clusters. Note that a star’s boundary cannot contain
the face between two face-adjacent inverted tetrahedra; the map Φ
is not orientation-preserving on that face, in violation of the star
conditions. For efficiency, we therefore conquer entire connected
components of inverted tetrahedra at once. For clarity, however,
Algorithm 2 lists the simple one-by-one version.

6.1.1 Checking Star Conditions. On the boundary of the growing
star we perform an oriented star-shapedness check and an injectivity
check. A separate check for ball topology is not necessary; it is
implied by star-shapedness.

Star-Shapedness Check. To certify star-shapedness, we compute a
witness guard point 𝑥0 inside the kernel (Section 4.3). More specif-
ically, we can compute the Chebyshev center [Boyd and Vanden-
berghe 2004, §8.5], the center of the largest inscribed sphere, of the

𝑥0
𝑟

(a) Star-shaped.

𝑥0
−𝑟

(b) Non-star-shaped.

Fig. 8. Star-shapedness can be tested and in parallel the kernel’s Chebyshev
center 𝑥0 be determined by computing the maximum insphere radius 𝑟 .

kernel using a linear program (LP) as follows:

max
𝑥0,𝑟

𝑟 (2a)

s.t. 𝑛𝑓
T𝑥0 + 𝑟 ≤ 𝑛𝑓

T𝑎𝑓 for all triangles 𝑓 ∈ 𝜕𝑆∗. (2b)

In this 𝑟 is an auxiliary variable that effectively measures the radius
of the insphere,𝑛𝑓 denotes the image normal of triangle 𝑓 , and 𝑎𝑓 an
arbitrary point contained in its image. See Fig. 8 for an illustration.
For the case of a degenerate triangle image Φ(𝑓), let 𝑛𝑓 = 0.

Regarding the orientation of the normals 𝑛𝑓 , let 𝑣𝑖 for 𝑖 ∈ {1, 2, 3}
be the vertices of 𝑓 , indexed such that (𝑣2 − 𝑣1) × (𝑣3 − 𝑣1) points
outwards of 𝑆∗ at 𝑓 . The normals for the LP are computed as

𝑛𝑓 =
(Φ(𝑣2) − Φ(𝑣1)) × (Φ(𝑣3) − Φ(𝑣1))
∥(Φ(𝑣2) − Φ(𝑣1)) × (Φ(𝑣3) − Φ(𝑣1))∥ . (3)

After solving the LP, if 𝑟 > 0 we say the star-shapedness check
succeeded; the resulting point 𝑥0 lies on the inside with respect to all
boundary triangles’ supporting planes in image space. If in addition
the boundary is simple (i.e. does not self-intersect) this means that
it bounds a region of R3 that is star-shaped and 𝑥0 is the center of
its kernel’s insphere. We note that it is possible (and in some cases
faster) to calculate an explicit geometric representation of the kernel
without the use of an LP [Sorgente et al. 2022]. However, in case of
non-star-shapedness, i.e. 𝑟 ≤ 0, the point 𝑥0 resulting from the LP
contains valuable information that we can leverage for the growth
heuristic (Section 6.1.2).

Injectivity Check. The above check verifies that the star boundary
forms a star-shaped set in image space and that its orientation is
proper. It does, however, not yet catch cases where the boundary
map 𝜙𝑆 is non-injective. Fig. 9 shows a 2D example of a boundary
image winding around a central point multiple times; it passes the
star-shapedness check, but the boundary image self-intersects, i.e.
the boundary map is non-injective.
Therefore, if the star-shapedness check succeeds, an additional

check for intersections between pairs of image triangles in 𝜙𝑆 ([𝜕𝑆])
needs to be performed. If an intersection is detected, the star keeps
growing. In our extensive experiments (cf. Section 7) this case actu-
ally never occurred. This is likely connected to the above mentioned
atomic treatment of inversion clusters (which, as a side effect, pre-
cludes configurations like in Fig. 9).

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

129:8 • Steffen Hinderink and Marcel Campen

𝑥0

Φ

Fig. 9. 2D illustration of a self-intersecting star boundary image (right, bold),
winding around 𝑥0 twice. The two triangles marked in red are inverted by Φ.

6.1.2 Growth Heuristic. The next tetrahedron 𝑐∗ to be conquered
for a growing star 𝑆∗ is chosen among the tetrahedra that are face-
adjacent to 𝑆∗, so as to maintain a connected set. Among these we
would like to select one that helps towards reaching a state that
satisfies the star conditions. Among the triangles of 𝜕𝑆∗ we compute
𝑓 ∗ = argmax𝑓 𝑛𝑓 T𝑥0 −𝑛𝑓

T𝑎𝑓 , with 𝑛𝑓 and 𝑎𝑓 as before, and select
the tetrahedron 𝑐∗ ∉ 𝑆∗ as the one incident to 𝑓 ∗. Fig. 10 illustrates
this choice. The rationale for this choice is as follows.
As discussed above, the main reason for violation of the star

conditions is non-star-shapedness, as indicated by a nonpositive
radius 𝑟 in the solution of (2). The triangle 𝑓 ∗ is one of the triangles
for which the constraint (2b) is sharp, i.e. whose supporting plane
has the highest signed distance (namely −𝑟) to the pseudocenter 𝑥0
of 𝑆∗. In this sense this triangle is a main reason for the radius 𝑟 not
being larger than it currently is. By conquering the incident 𝑐∗, 𝑓 ∗
no longer is a boundary triangle of ⟨𝑆∗ ∪ {𝑐∗}⟩.

Note that this is a greedy heuristic that does not guarantee to ulti-
mately find the smallest star; the smallest star might not contain 𝑐∗
and have a center from which 𝑓 ∗ is seen from the correct side.

Remark. Let us point out that the image of a finished star 𝑆 un-
der Φmay (due to inversions) lie partially outside of the star-shaped
boundary 𝜙𝑆 ([𝜕𝑆]) and even outside of the overall domain bound-
ary 𝜕𝑋 . This is not a problem because only the boundary image
𝜙𝑆 ([𝜕𝑆]) is made use of in our method, the map of the interior is
replaced using the algorithm from Section 5.

𝑥0

−𝑟
Φ(𝑓 ∗)

Φ(𝑐∗)

Fig. 10. Selection of the next tetrahedron 𝑐∗ to be added to a growing star
based on its pseudo-center 𝑥0 in image space. Note that the “most violating”
element 𝑓 ∗ (a face in 3D, an edge in this 2D illustration) is not unique:
The three bold blue elements have the same distance to 𝑥0; one of these is
chosen arbitrarily. The incident tetrahedron then is chosen as 𝑐∗.

6.2 Star Map Fusion
Once the galaxy G is computed, per star 𝑆𝑖 ∈ G with boundary
map 𝜙𝑆𝑖 a new map Ψ𝑖 can be computed using the algorithm from
Section 5. Together with the (non-bijective) map Φ we can compose
these to the global bijective map Ψ:

Ψ(𝑝) =
{
Ψ𝑖 (𝑝) if 𝑝 ∈ [𝑆𝑖]
Φ(𝑝) otherwise.

(4)

This map can be evaluated, at a given point 𝑝 ∈ [𝑀], as follows.
Check whether 𝑝 lies inside any star. If not, evaluate the (piecewise
linear) map Φ at 𝑝 and return the result. Otherwise, if 𝑝 lies inside
star 𝑆𝑖 , evaluate the foliation based map Ψ𝑖 at 𝑝 (by tracing the
corresponding leaf, etc., as described in Section 5.1.1).
For many practical purposes it will be more useful, however, to

have a unified global piecewise linear map available. To this end
we can linearize each star map Ψ𝑖 as described in Section 5.2, and
combine these with the map Φ on 𝑀 \⋃𝑖 𝑆𝑖 . Due to the fact that
the linearization implies some refinement for the meshes 𝑆𝑖 , this
combination requires a little extra effort to yield a conforming mesh
again at the interface of the stars. This is described in the following.

6.2.1 Star Linking. The transition between eachΨ𝑖 andΦ is continu-
ous because the latter was used to constrain the surface map of each
Ψ𝑖 . But when refining 𝑆𝑖 to 𝑆𝑖 ′ to yield a piecewise linear version
Ψ𝑖

′ of Ψ𝑖 (cf. Section 5.2), the tetrahedral meshes 𝑆𝑖 ′ and ⟨𝑀 \ 𝑆𝑖 ⟩
do not fit together conformingly anymore; multiple tetrahedra of
𝑆𝑖

′ may be adjacent to one tetrahedron of𝑀 via a face or an edge.
We therefore refine one layer𝑂 = ⟨{𝑐 ∈ 𝑀 : 𝑐 ∉ 𝑆𝑖 ∧ 𝑐 ∩ [𝑆𝑖] ≠ ∅}⟩
of tetrahedra around 𝑆𝑖 in𝑀 , so as to conformingly link 𝑆𝑖 ′ and𝑀 .

Each tetrahedron 𝑐 ∈ 𝑂 is refined as follows. Let 𝑠 = 𝑐 ∩ [𝑆𝑖].
• If 𝑠 consists of vertices only, 𝑐 does not need to be refined.
• If 𝑠 consists of an edge 𝑒 (and possibly further vertices), 𝑐
can be refined as a fan of tetrahedra: In 𝑆 ′, 𝑒 was possibly
split into multiple subedges; for each of these a tetrahedron
is spanned with the opposite edge of 𝑒 in 𝑐 (Fig. 11a).

• If 𝑠 consists of a triangle 𝑓 (and possibly its opposite vertex), 𝑐
can be refined as a bouquet of tetrahedra: In 𝑆 ′, 𝑓 was possibly
split intomultiple subtriangles; for each of these a tetrahedron
is spanned with the opposite vertex of 𝑓 in 𝑐 (Fig. 11b).

Besides these single-edge and single-face cases, 𝑐 can be adjacent
to 𝑆𝑖 in more complex ways. To avoid a long list of special refine-
ment rules for any adjacency pattern, we first split such tetrahedra,
reducing to the above simple cases.

(a) Fan. (b) Bouquet.

Fig. 11. Tetrahedra in the interface layer surrounding a star are refined to
either a fan or a bouquet of subtetrahedra, so as to yield conformance to
the refined star, adjacent via the (a) edge or (b) face marked in blue.

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

Galaxy Maps: Localized Foliations for Bijective Volumetric Mapping • 129:9

0: ×

1: F

2: F

3: F

4: F

5: F

6: F

7: ✓

8: ✓

9: F

10: F

11: F

12: F

13: F

14: F

15: F

16: F

17: F

18: F

19: T

20: ✓

21: ✓

22: ✓

23: ✓

24: ✓

25: ✓

26: ✓

Fig. 12. Configurations of the set 𝑠 (blue) on a tetrahedron 𝑐 . Case 0 cannot occur in our setting due to star-shapedness (×). Some cases need no refinement or
can easily be handled by refining them as a fan or bouquet (✓). All others can be reduced to these simple cases via a tetrahedron split (T) or face splits (F).

Concretely, if 𝑠 consists of two non-adjacent (i.e. opposite) edges
of 𝑐 (case 19 in Fig. 12), we perform a barycentric tetrahedron split,
splitting 𝑐 into four tetrahedra, inserting a new vertex in its barycen-
ter. Otherwise, we perform a barycentric face split on every face of
𝑐 that is not in 𝑠 but more than one of its edges is. Fig. 12 shows all
potential configurations for 𝑠 in 𝑐 . One easily verifies that these split
rules leave only simple tetrahedra, with 𝑠 a single simplex (with
vertices), in each of these cases.

The global map is identically carried over onto the subtetrahedra
created by splitting and by fan or bouquet refinement, simply by
linearly interpolating map values onto the new vertices. Algorithm 3
summarizes the complete method.

Algorithm 3: Overall Method
Input: Tetrahedral mesh𝑀 with (possibly non-bijective) map Φ,

linear per tetrahedron
Output: Refined tetrahedral mesh𝑀′ with bijective map Ψ, linear

per tetrahedron
𝑀′ = 𝑀

Ψ = Φ
Compute galaxy G ⊲ Algorithm 2

for each star 𝑆𝑖 ∈ G
Compute map Ψ𝑖 on 𝑆𝑖 with𝜓 = Ψ | [𝜕𝑆𝑖] ⊲ Algorithm 1

Linearize Ψ𝑖 to Ψ𝑖
′ refining 𝑆𝑖 to 𝑆𝑖 ′ ⊲ Section 5.2

𝑂 = ⟨{𝑐 ∈ 𝑀′ : 𝑐 ∉ 𝑆𝑖 ∧ 𝑐 ∩ [𝑆𝑖] ≠ ∅}⟩
𝑀′ = ⟨𝑀′ \ (𝑆𝑖 ∪𝑂) ⟩
Refine𝑂 to𝑂′ to match 𝑆𝑖

′ maintaining Ψ ⊲ Section 6.2

𝑀′ = 𝑀′ ∪𝑂′ ∪ 𝑆𝑖
′ with Ψ | [𝑆𝑖 ′] = Ψ𝑖

′

return𝑀′

6.3 Numerics
Like in the algorithm from Section 5, all calculations in the proposed
galaxy based method occur in Q—with one exception: setting up the
LP (2) requires the calculation of vector lengths for normalization
in (3). While this normalization could be skipped or approximated
without affecting the sign of 𝑟 , for efficiency we can even solve the
LP approximately using standard floating point arithmetic, and then

check the resulting point 𝑥0 for being a guard using exact orientation
predicates. Formally, this yields a test for star-shapedness that is
conservative, which is sufficient for correctness.

7 RESULTS
We implemented the described method in C++, using GMP for its
rational number type, and CGAL for 2D arrangements (refinement
patterns) and to solve the Chebyshev center LP (2). All experiments
were conducted on a system with AMD EPYC 7742 processor.

7.1 Datasets
We make use of the following datasets with problem instances for
purposes of evaluation and comparison.

TLC: The 46 volumetric instances with a star-shaped do-
main from the mapping dataset1 of Du et al. [2020].
CUB: The 60 instances from the mapping dataset2 of Brück-
ler et al. [2022b], with prescribed boundary maps onto cuboid
domains.

To enable a broader evaluation, we furthermore create new map-
ping problem instances, bringing the total number of instances to
over 7500. From all the surface meshes from the Thingi10K dataset
[Zhou and Jacobson 2016] that have genus 0, tetrahedral meshes
are generated using TetWild [Hu et al. 2018]. To increase diversity,
for a 10 % subset of this set of surface meshes we additionally gen-
erate tetrahedral meshes using TetGen [Si 2015]. Using a simple
randomized procedure, we attempt to generate example bijective
boundary maps for all these, so as to yield input instances for testing.
As target domains we use a sphere, a cube, and a nonconvex domain
(a star-shaped deformed bipyramid). In brief, by picking random
boundary vertices and connecting them by shortest paths, the proce-
dure attempts to partition the surface, structurally compatible with
the cube, the bipyramid, or in the case of the sphere two disks. Each
patch of the partition is then mapped onto its corresponding face
of the domain using a 2D Tutte embedding (in case of the sphere: a
disk that is then projected onto one of the hemispheres). If unsuc-
cessful (e.g. shortest paths overlap, invalidating the partition), the
1https://github.com/duxingyi-charles/Locally-Injective-Mappings-Benchmark
2https://github.com/HendrikBrueckler/CuboidBlocks

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

https://github.com/duxingyi-charles/Locally-Injective-Mappings-Benchmark
https://github.com/HendrikBrueckler/CuboidBlocks

129:10 • Steffen Hinderink and Marcel Campen

103 104 105 106
0 %
1%
2%
3%

|𝐶𝑀 |

Fig. 13. Distribution of mesh size (number of tetrahedra) for each dataset.

model-domain combination in question is dropped, otherwise it is
added to the datasets of problem instances—unless it is so simple
that already a 3D Tutte embedding yields a bijective result. This led
to the following additional datasets:

TWS: 2738 TetWild meshes mapped to spheres
TWC: 1884 TetWild meshes mapped to cubes
TWN: 2340 TetWild meshes mapped to nonconvex domain
TGS: 249 TetGen meshes mapped to spheres
TGC: 108 TetGen meshes mapped to cubes
TGN: 166 TetGen meshes mapped to nonconvex domain

The distribution of mesh sizes of all datasets is shown in Fig. 13.
The whole collection of these six additional datasets is available at
https://github.com/SteffenHinderink/GalaxyMaps.

7.2 Evaluation
We run our galaxy based method to generate a bijective map Ψ
following (4) on all mapping problem instances. The initial maps
are generated simply using 3D Tutte embedding. As can be seen in
Table 1, as expected, it succeeds to produce a volumetric bijection for
all instances. Fig. 14 shows an example instance in which the initial
map even maps partly outside of the prescribed domain boundary, a
case relatively common for Tutte embeddings to nonconvex domains.
This makes no difference to our method; the map is modified into a
bijective map into the intended domain.

7.2.1 Star Statistics. To gain further insight into our method we
analyze the galaxies. Fig. 15 shows the distributions of the number of
stars per galaxy. Fig. 16a further examines the size of the individual

Φ Ψ

Fig. 14. The image of the mesh under the non-bijective input map Φ (left)
lies partially outside of 𝜕𝑋 (at a concave region). Our method produces a
bijective map Ψ, therefore the image lies properly inside (right).

Table 1. Number of successes and success rate to produce a bijective map.
The initial 3D Tutte embedding fails for all instances in the datasets, i.e. our
method has work to do in every case. It reliably produces a bijection.

Dataset Total Tutte Tutte rate Ours Ours rate
TLC 46 0 0 % 46 100 %
CUB 60 0 0 % 60 100 %
TWS 2738 0 0 % 2738 100 %
TWC 1884 0 0 % 1884 100 %
TWN 2340 0 0 % 2340 100 %
TGS 249 0 0 % 249 100 %
TGC 108 0 0 % 108 100 %
TGN 166 0 0 % 166 100 %

stars. Compared to the whole meshes, the stars are typically very
small, the vast majority not even containingmore than 20 tetrahedra.
This means that our method succeeds in localizing small regions
around the inverted tetrahedra, where the initial map can be fixed
based on small local mapping problems. Notice that the tetrahedral
meshes generated by TetGen seem to have characteristics that are
particularly favourable in this regard. Fig. 16b shows how many of
the tetrahedra of a mesh are part of any star, i.e. of the galaxy.

Alternative Galaxies. Let us remark that the galaxies could also be
created in different ways than proposed, using different classes of
target shapes when growing the stars. First, instead of treating the
guard point 𝑥0 as a variable in every step while growing a star 𝑆∗,
it could be fixed, e.g. at the center of the seed tetrahedron. This

50 100 150 200

2 %

4%

6%

|G|

Fig. 15. Distribution of galaxy size (number of stars), over all dataset in-
stances. The last bar covers all sizes > 200.

20 40 60 80 100

10 %

20%

|𝐶𝑆 |

(a) Number of tetrahedra per star.

25 % 50% 75%100%

10%

20%

30%

∑ 𝑆
∈G

|𝐶
𝑆
| /|𝐶

𝑀
|

(b) Ratio of tetrahedra in galaxy.

Fig. 16. Distribution of star size and galaxy size (number of contained
tetrahedra) relative to the whole mesh𝑀 , over all dataset instances.

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

https://github.com/SteffenHinderink/GalaxyMaps

Galaxy Maps: Localized Foliations for Bijective Volumetric Mapping • 129:11

20 40 60 80 100

10 %

20%

30%

40%

|G|

(a) Number of stars per galaxy.

25 % 50% 75%100%

10%

20%

30%

∑ 𝑆
∈G

|𝐶
𝑆
| /|𝐶

𝑀
|

(b) Ratio of tetrahedra in galaxy.

Fig. 17. Distribution of galaxy size when using alternative fixed guards.

would remove the need to solve the LP (2) and thereby speed up the
process. Second, convex instead of star-shaped sets could be used
since they are a subset of the latter. Both options have the benefit
of allowing for the determination of the actual minimum such set
of tetrahedra enclosing a seed, by means of a greedy procedure that
simply adds any violating tetrahedron to 𝑆∗ until there is none left.
However, our experiments reveal that the downsides due to the

more restrictive nature of these alternatives outweigh their benefits.
While many stars grown with a fixed guard have a similar size as
stars grown with a free guard, for others the desired star-shaped
state with respect to the fixed guard cannot be reached (in which
case we used the fallback to 𝑆∗ = 𝑀). That is why many instances
have only 1 star in their fixed-guard galaxy, cf. Fig. 17a—it often is
a star equal to all of𝑀 ; this is the case for 39.14 % of all instances,
as reflected in the tall last bar in Fig. 17b. This problem is only
exacerbated by using convex sets: For no instance multiple small
sets resulted, all such galaxies contain 1 global convex set, the size
of which typically is very similar to 𝑀 ; at most some tetrahedra
along the boundary are sometimes excluded.

7.2.2 Runtime. Next, we evaluate the runtime of ourmethod. Fig. 18
shows the distribution of the total runtime. Its varies strongly, be-
tween milliseconds and days. While a bulk of instances is bijectively
mapped in seconds, especially complex meshes mapped to non-
convex domains can take much longer. In particular, 85 instances
(i.e. ≈ 1 %) take longer than one day to be parametrized. Character-
istically, these are all very large instances (|𝐶 | > 150 000) from the

10−2 10−1 100 101 102 103 104 105
0 %

1%

2%

3%

1 s 1min 1 h 1 d

𝑡 [s]

Fig. 18. Distribution of runtime over all dataset instances. A bulk is handled
within seconds, but especially instances with non-convex domains can take
longer, in rare cases multiple hours.

Φ

Fig. 19. Example of an instance (left) for which the initial Tutte map (right)
has vast inversion clusters (red), making the localizing galaxy approach
ineffective; here it leads to one star, containing all but 35 tetrahedra.

newly generated datasets and have bad initial maps with major clus-
ters of inverted tetrahedra (see Fig. 19) resulting from an intricate
object shape or a nonconvex domain shape. Together this implies
the growth of large stars.

The size of the stars is the main factor for the total runtime. This
is made evident by analyzing the runtimes of the different steps of
the method. Fig. 20a shows how long it takes to grow a star. Note
that many of the big stars arise from collisions of small stars (which
are grown quickly); this is the reason for the many data points near
the horizontal axis in the plot. But growing a large star from scratch
takes longer per tetrahedron the bigger the star gets. This is the main
bottleneck of our current implementation—re-solving the entire LP
each time a tetrahedron is added to the growing star, and safely
testing star-shapedness using (unfiltered) exact arithmetic. The time
for remapping a star, by in particular generating the direction field
that defines a foliation of the star, likewise depends on the star’s
size. But compared to star growing, this step is rather negligible,
cf. Fig. 20b. It only makes up 0.01 % of the total runtime for the
above 85 long-running instances.

7.2.3 Linearization. We now turn to furthermore refining the stars,
so as to obtain a piecewise linear version of Ψ as described in Sec-
tion 5.2. As also discussed in [Campen et al. 2016, §7], this process
is expensive. While a portion of this refinement is superfluous and

20k 40k 60k 80k100k

200

400

600

|𝐶𝑆 |

𝑡 [min]

(a) Growing.

100k 200k 300k 400k

10

20

30

40

|𝐶𝑆 |

𝑡 [s]

(b) Foliation.

Fig. 20. Growing time (a) per star and time to compute the foliation-based
map (b) per star, in relation to the (final) star size |𝐶𝑆 |.

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

129:12 • Steffen Hinderink and Marcel Campen

Table 2. Statistics regarding piecewise linearization (PL) through mesh
refinement. It succeeded in obtaining a bijective piecewise linearmap version
for all instances we evaluated it on.

Dataset Total All stars ≤ 1000 Ratio PL success
TLC 46 43 93.48 % 43
CUB 60 43 71.67 % 43
TWS 2738 2511 91.71 % 2511
TWC 1884 1064 56.48 % 1064
TWN 2340 626 26.75 % 626
TGS 249 210 84.34 % 210
TGC 108 54 50.00 % 54
TGN 166 46 27.71 % 46

could be decimated again in the end, the high intermediate size
and runtime limits practical global applicability of this lineariza-
tion approach to meshes with a few hundred or perhaps thousand
tetrahedra. Experiments with our implementation, applied globally,
confirm this. The number of tetrahedra may increase by orders of
magnitude due to refinement and the runtime to perform it behaves
accordingly, cf. Fig. 21. If applied globally, without our galaxy based
approach, it would take more than a day for more than 90 % of the
instances of our datasets.

In our method, due to the localized application of the algorithm,
per star of the galaxy, this issue is strongly ameliorated. As seen in
Section 7.2.1, most of the stars stay relatively small, the vast majority
contain less than 20 tetrahedra, permitting swift refinement for
linearization.
For experimental practicability, we restrict our analysis of this

linearization procedure in the context of our method to those input
instances whose galaxies do not contain a star larger than 1000
tetrahedra. Table 2 reports for what percentage of instances that is
the case. On all resulting maps of the experiments with piecewise
linearization through refinement, we performed a test, checking for
tetrahedra that are inverted or degenerated by the map. It verified
bijectivity in every case, as reported in the last column of Table 2.
The global refinement ratio is shown in Fig. 22. Comparing this
to the typical ratios observed in Fig. 21a, the major benefit of the

101 102 103
101

103

105

|𝐶𝑆 |

|𝐶𝑆′ |

(a) Number of tetrahedra.

101 102 103
10−2

101

104

|𝐶𝑆 |

𝑡 [s]

(b) Time.

Fig. 21. Linearization: Number of resulting tetrahedra (a) and time (b) per
star to perform the mesh refinement, depending on the star’s size.

103 104 105 106
100

101

102

2
|𝐶𝑀 |

|𝐶𝑀′ |/|𝐶𝑀 |

Fig. 22. Global refinement ratio due to piecewise linearization, depending
on input mesh size (over a subset of test instances, with stars no larger than
1000 tetrahedra, cf. Table 2). The majority (92.04 %) has a ratio below 2.

localizing galaxy approach in terms of heavily reduced refinement
becomes clear. The overall runtime of the method, including final
linearization through mesh refinement, is reported in Fig. 23.

7.2.4 Non-Star-Shaped Domains. As a brief remark, our method
also succeeds on 310 of the 858 volumetric instances that have a
non-star-shaped prescribed domain (thus actually violate our input
assumption) from the mapping dataset of Du et al. [2020], even
though they are beyond the scope of our method. Of those, 282
instances have stars no larger than 1000 tetrahedra. Statistics and
an example of these are depicted in Fig. 24. This is possible as long
as each star converges to a ball-topology star-shaped part of the
domain.

7.3 Comparison
In the following we compare our method to two recent methods,
TLC [Du et al. 2020] and FFM [Garanzha et al. 2021], that aim for
bijective maps via an optimization approach rather than construc-
tively. Let us remark that their problem setting is not identical to
ours, which should be taken into account when interpreting the
results. In particular they assume a fixed mesh relative to which the
output map is supposed to be piecewise linear. On the one hand this

10−2 10−1 100 101 102 103 104
0 %

1%

2%

3%

1 s 1min 1 h

𝑡 [s]

Fig. 23. Distribution (over a subset of test instances, with stars no larger than
1000 tetrahedra, cf. Table 2) of the total time to determine the galaxy, foliate
all stars, perform piecewise linearization of all stars through refinement,
and fuse them with the remainder of the global map.

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

Galaxy Maps: Localized Foliations for Bijective Volumetric Mapping • 129:13

Ψ

104 105
1

1.2

1.4

|𝐶𝑀 |

|𝐶𝑀′ |/|𝐶𝑀 |

10−1100 101 102
0 %

10%

20%

1 s 1min

𝑡 [s]

Fig. 24. Our method may succeed even when the mapping domain is not
star-shaped. In this example (left, with a surface of genus 4) it is not even of
ball topology—but its stars (blue) are, which is sufficient. The plots show the
refinement ratio and runtime distribution (average: 4 s) over the successful
non-star-shaped instances (cf. Section 7.2.4), analogous to Figures 22 and 23.
The peaks in the plots are due to one mesh occurring multiple times (with
differing domain shape) in the dataset of Du et al. [2020].

clearly is beneficial for various applications, on the other hand the
fixed discretization may be adverse to achieving bijectivity.
On that note, to aid these methods we preprocess the input

meshes, so as to grant more degrees of freedom: An interior edge
𝑒 ∈ 𝑀 \ 𝜕𝑀 is split if each incident vertex 𝑣 ∈ 𝜕𝑀 ; an interior
face 𝑓 ∈ 𝑀 \ 𝜕𝑀 is split if each incident edge 𝑒 ∈ 𝜕𝑀 . This is to
avoid some cases in which these methods trivially could not succeed
because they operate with a fixed mesh and have no means to sys-
tematically perform mesh refinement; the input mesh in its original
form may not permit any valid (PL) map that respects the prescribed
boundary map. Fig. 7 illustrates this. Note that our method makes
no restricting assumptions on the input mesh’s connectivity, i.e.
such pre-refinement is not required.

7.3.1 Reliability. FFM and TLC are best-effort methods. While im-
pressively high success rates have been observed on triangle meshes
in 2D, they seem to struggle more often in the 3D case, depending
on the problem instance characteristics. This can be observed in
Table 3, which lists their success rates on the various datasets. Note
that we used the implementations3,4 provided by the respective
authors for these experiments. While on the TLC dataset (as well as
on the non-star-shaped instances, cf. Section 7.2.4) both methods
have a success rate of 100 %, on all others it is significantly lower,
between 30 % and 80 %.

Regarding the question whether the cases that are difficult for our
method (in terms of runtime or amount of refinement) are correlated
to the cases difficult for TLC or FFM we observed the following.
The success rates of TLC and FFM on the subset of input instances

3https://github.com/duxingyi-charles/lifting_simplices_to_find_injectivity
4https://github.com/ssloy/invertible-maps

Table 3. Number of successes and success rates of TLC and FFM to produce
a bijection, in contrast to our method’s success rate reported in Table 1.

Dataset Total TLC TLC rate FFM FFM rate
TLC 46 46 100 % 46 100 %
CUB 60 35 58.33 % 28 46.67 %
TWS 2738 1892 69.10 % 1547 56.50 %
TWC 1884 1499 79.56 % 1144 60.72 %
TWN 2340 1355 57.91 % 1213 51.84 %
TGS 249 82 32.93 % 97 38.96 %
TGC 108 48 44.44 % 46 42.59 %
TGN 166 50 30.12 % 51 30.72 %

that caused no stars larger than 1000 tetrahedra (cf. Table 2) show
no peculiarity, they are similar to those on the full dataset. On the
instances that took our method more than a day (cf. Section 7.2.2),
however, TLC and FFM perform relatively badly, succeeding on only
9 and 0 out of these 85, respectively.

7.3.2 Runtime. Since TLC as well as FFM use numerical optimiza-
tion to aim for bijectivity, their runtimes depend on the parameters
used for their solvers. We use the provided default parameters. For
FFM we added a check for NaNs after each iteration, outputting
the best numerically sane map state so far when numerical limits
are reached. Figures 25 and 26 show the runtimes of the methods

100 101 102 103 104
0 %

1%

2%

3%

1 s 1min 1 h

𝑡 [s]

Fig. 25. Distribution of runtime of the TLC method on all dataset instances.
Failure cases, with a non-bijective result, are greyed out.

100 101 102 103 104 105
0 %

1%

2%

3%

1 s 1min 1 h 1 d

𝑡 [s]

Fig. 26. Distribution of runtime of the FFM method on all dataset instances.
Failure cases, with a non-bijective result, are greyed out.

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

https://github.com/duxingyi-charles/lifting_simplices_to_find_injectivity
https://github.com/ssloy/invertible-maps

129:14 • Steffen Hinderink and Marcel Campen

Ψ

Fig. 27. An example of an instance that is successfully mapped, bijectively
and piecewise linearly, by TLC, FFM, and our method. TLC and FFM each
take about 2min. Our method takes 5 s.

resulting from these parameters. While FFM exhibits similar run-
times of up to over 1 day as our method, TLC—when it succeeds—on
average is relatively fast in comparison. This is not generally the
case, though. There are instances on which TLC and FFM succeed
and where our method (even including linearization) is significantly
faster. One example for this is shown in Fig. 27. Also on the examples
from Fig. 24 this is the case, with average runtimes of 25 s and 61 s,
respectively, compared to 4 s.

7.3.3 Escalating Approach. TLC appears suitable to be used as an
intermediate tier in an escalating approach because it is relatively
fast and does not change mesh connectivity. Concretely, given a
mapping problem instance, simple Tutte embedding is applied first.
If the result is not bijective, TLC is applied to improve this map.
If the result is still not bijective, our method comes to the rescue,
finally turning this improved map into a bijection. The runtimes of
this escalating 3-tiered approach are depicted in Fig. 28. In compar-
ison to Fig. 18 it is apparent that, while the very quick instances
take a bit longer with the intermediate TLC tier, the very long runs
are prevented. A key reason is that TLC, even if unsuccessful in
obtaining a bijection, often improves the inital map in the sense of

100 101 102 103 104 105
0 %

2%

4%

1 s 1min 1 h 1 d

𝑡 [s]

Fig. 28. Distribution of total runtime of the 3-tiered escalating approach
(Tutte → TLC → GalaxyMaps) over all dataset instances. Notice that, in
comparison to the standard approach (Tutte→GalaxyMaps) in Fig. 18, while
the runtime of the very quick instances increases due to additional overhead,
the runtime of the very long-running instances is reduced favourably in
many cases.

10−4 10−3 10−2 10−1 100
0 %

1%

2%

3%

5ms 1 s

𝑡/|𝐶 | [s]

Fig. 29. Distribution of TLC’s average runtime per tetrahedron.

in particular pulling the clusters of inverted tetrahedra that com-
monly arise from Tutte embedding at nonconvex regions, into the
prescribed domain boundary and uninverting at least a significant
portion of them. This leaves less work, with smaller stars, for our
method.

There is potential to further improve this approach. For instance,
a time limit could be imposed on the intermediate tier. According to
Fig. 25, full success of TLC is unlikely once it has been optimizing
for a few minutes. We also did not observe significant improvement
of the maps, in terms of the number of inverted tetrahedra, beyond
that point. Granting additional time thus seems rather futile. Ideally,
of course, such a time limit should be relative to the size of the
instance. As an optimization step of TLC takes time close to linear
in the size of the mesh, a time budget per tetrahedron is reasonable.
Based on Fig. 29, a budget somewhere around 5ms per tetrahedron
appears reasonable; beyond that, the chance of eventual failure is
much higher than that of success. We leave further exploration of
configurations and potential variants to future work.

7.3.4 Distortion. In this work our focus is on bijectivity, not the
quality of the map beyond that, in terms of mapping distortion. This
focus is reasonable in the sense that methods exist, discussed in
Section 2.2, that assume as input a bijective map, which is then
improved in terms of distortion while maintaining bijectivity. Our
method essentially provides a valid starting point in this context.
To give an idea of the magnitude of distortion, Table 4 reports

the minimum Jacobian determinant of Ψ (over all tetrahedra) for
an example instance. It is strictly positive by construction with our
method, but can be very close to zero. Methods such a TLC or FFM,
which (indirectly) take distortion into account while aiming for
bijectivitiy, yield maps of less distortion. As can be seen in the last
column, applying a simple distortion optimization to our method’s
result can bring the map to a comparable level of distortion.

Table 4. Map distortion in terms of the minimum determinant of the map’s
Jacobian over all elements of an example mapping instance on which also
TLC and FFM succeed (the Bimba instance from the TLC datatset).

Tutte Ours FFM TLC Ours + optim.

min det 𝐽 −24.50 2.07 ·10−7 1.00 ·10−3 1.27 ·10−3 1.45 ·10−3

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

Galaxy Maps: Localized Foliations for Bijective Volumetric Mapping • 129:15

7.4 Limitations
By design, our method is restricted to star-shaped mapping domains.
Due to the galaxy approach, it may well work for other domains,
too, cf. Section 7.2.4, but in such cases it is without guarantee. While
the class of star-shapes is already significantly larger than that of
convex shapes, which various other methods are restricted to, a
generalization to arbitrary domains would be an asset. Some divide-
and-conquer approach or the direction pointed out in Section 8
could be followed to that end in future work.
As for practical limitations, the method can be slow. Note, how-

ever, that there is no faster alternative with bijectivity guarantee,
and even state-of-the-art methods without guarantee but reason-
able success rates are not necessarily faster (cf. Section 7.3). The
two main factors, by far, are the star growing and the refinement
for linearization. Fortunately, there is obvious potential for speed-
up in these parts: Instead of solving the LP for star growing from
scratch every time, warm starting could be employed, exploiting
that only a few constraints change between iterations. Instead of
solving the LP after each single tetrahedron added to a star, the
guard point could be kept fixed for batches. Vertex images could
be adjusted at the growing star’s boundary to aid star-shapedness.
Particularly attractive would be a variant of the refinement that
is not as highly conservative, but rather adaptively performs re-
finement only where necessary to preserve bijectivity, as was done
for the 2D case [Campen et al. 2016, Appendix B.2], though this
is less obvious. Finally, our implementation used for evaluation is
single-threaded. There are multiple opportunities for easy paral-
lelization, such as growing stars in parallel, computing foliations in
parallel, or performing the projections, arrangement computations,
and tetrahedral subdivisions during refinement in parallel. There
also is room to employ more efficient arithmetics, e.g. fast filtered
predicates.

8 CONCLUSION
Wehave presented GalaxyMaps, amethod to apply foliation based bi-
jective map constructions in a local manner, reliably yielding global
3D bijective maps onto arbitrary convex or star-shaped domains.
The local regions, stars, are adaptively determined as star-shaped
regions around defects of imperfect non-bijective initial maps. Per
star, our methodmakes use of a generalization of a previous foliation
based mapping algorithm to more general domains.
In future work, besides addressing the items discussed in Sec-

tion 7.4, it will be interesting to consider the combination of two
(globally or locally) foliation based maps via an intermediate do-
main, so as to define bijective maps between two fully arbitrary
shapes, similar to some approaches in the 2D setting [Schmidt et al.
2019; Weber and Zorin 2014]. This would enable reusing the reli-
able method presented herein, or parts thereof, for this even more
general setting. Main challenges will lie in efficiently handling the
task of piecewise linearization, amplified due to the composition of
two maps.

ACKNOWLEDGMENTS
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG) - 497335132; 456666331.

REFERENCES
S. Mazdak Abulnaga, Oded Stein, Polina Golland, and Justin Solomon. 2023. Sym-

metric Volume Maps: Order-invariant Volumetric Mesh Correspondence with Free
Boundary. ACM Trans. Graph. 42, 3 (2023), 25:1–25:20.

Noam Aigerman and Yaron Lipman. 2013. Injective and Bounded Distortion Mappings
in 3D. ACM Trans. Graph. 32, 4 (2013), 106:1–106:14.

Marc Alexa. 2023. Tutte Embeddings of Tetrahedral Meshes. Discrete & Computational
Geometry (2023).

Marc Alexa, Daniel Cohen-Or, and David Levin. 2000. As-Rigid-As-Possible Shape
Interpolation. In Proc. SIGGRAPH 2000. 157–164.

Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge
University Press.

Hendrik Brückler, David Bommes, and Marcel Campen. 2022a. Volume Parametrization
Quantization for Hexahedral Meshing. ACM Trans. Graph. 41, 4 (2022), 60:1–60:19.

Hendrik Brückler, Ojaswi Gupta, Manish Mandad, and Marcel Campen. 2022b. The
3D Motorcycle Complex for Structured Volume Decomposition. Computer Graphics
Forum 41, 2 (2022), 221–235.

Marcel Campen, Ryan Capouellez, Hanxiao Shen, Leyi Zhu, Daniele Panozzo, and Denis
Zorin. 2021. Efficient and Robust Discrete Conformal Equivalence with Boundary.
ACM Trans. Graph. 40, 6 (2021), 261:1–261:16.

Marcel Campen, Cláudio T. Silva, and Denis Zorin. 2016. Bijective Maps from Simplicial
Foliations. ACM Trans. Graph. 35, 4 (2016), 74:1–74:15.

David Cohen and Mirela Ben-Chen. 2019. Generalized volumetric foliation from
inverted viscous flow. Computers & Graphics 82 (2019), 152–162.

Xingyi Du, Noam Aigerman, Qingnan Zhou, Shahar Z. Kovalsky, Yajie Yan, Danny M.
Kaufman, and Tao Ju. 2020. Lifting Simplices to Find Injectivity. ACM Trans. Graph.
39, 4 (2020), 120:1–120:17.

Xingyi Du, Danny M. Kaufman, Qingnan Zhou, Shahar Z. Kovalsky, Yajie Yan, Noam
Aigerman, and Tao Ju. 2022. Isometric Energies for Recovering Injectivity in Con-
strained Mapping. In Proc. SIGGRAPH Asia 2022. 36:1–36:9.

J. M. Escobar, E. Rodrıguez, R. Montenegro, G. Montero, and J. M. González-Yuste. 2003.
Simultaneous untangling and smoothing of tetrahedral meshes. Comput. Methods
Appl. Mech. Eng. 192, 25 (2003), 2775–2787.

Yu Fang, Minchen Li, Chenfanfu Jiang, and Danny M. Kaufman. 2021. Guaranteed
Globally Injective 3D Deformation Processing. ACM Trans. Graph. 40, 4 (2021),
75:1–75:13.

Michael S. Floater. 1997. Parametrization and smooth approximation of surface trian-
gulations. Computer Aided Geometric Design 14, 3 (1997), 231–250.

Michael S. Floater and Valérie Pham-Trong. 2006. Convex combination maps over trian-
gulations, tilings, and tetrahedral meshes. Advances in Computational Mathematics
25, 4 (2006), 347–356.

Xiao-Ming Fu, Yang Liu, and Baining Guo. 2015. Computing Locally Injective Mappings
by Advanced MIPS. ACM Trans. Graph. 34, 4 (2015), 71:1–71:12.

Xiao-Ming Fu, Jian-Ping Su, Zheng-Yu Zhao, Qing Fang, Chunyang Ye, and Ligang Liu.
2021. Inversion-free geometric mapping construction: A survey. Computational
Visual Media 7, 3 (2021), 289–318.

Robert Furch. 1924. Zur Grundlegung der kombinatorischen Topologie. Abhandlungen
aus dem mathematischen Seminar der Universität Hamburg 3, 1 (1924), 69–88.

Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas
Ray, and Dmitry Sokolov. 2021. Foldover-free maps in 50 lines of code. ACM Trans.
Graph. 40, 4 (2021), 102:1–102:16.

Mark Gillespie, Boris Springborn, and Keenan Crane. 2021. Discrete Conformal Equiv-
alence of Polyhedral Surfaces. ACM Trans. Graph. 40, 4 (2021), 103:1–103:20.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4 (2018), 60:1–60:14.

Lisa Huynh and Yotam Gingold. 2015. Bijective Deformations in R𝑛 via Integral Curve
Coordinates. arXiv:1505.00073

S. S. Iyengar, Xin Li, Huanhuan Xu, Supratik Mukhopadhyay, N. Balakrishnan, Amit
Sawant, and Puneeth Iyengar. 2012. Toward More Precise Radiotherapy Treatment
of Lung Tumors. Computer 45, 1 (2012), 59–65.

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial Complex Augmen-
tation Framework for Bijective Maps. ACM Trans. Graph. 36, 6 (2017), 186:1–186:9.

Bert Jüttler, Sofia Maroscheck, Myung-Soo Kim, and Q Youn Hong. 2019. Arc fibrations
of planar domains. Computer Aided Geometric Design 71 (2019), 105–118.

Shahar Z. Kovalsky, NoamAigerman, Ronen Basri, and Yaron Lipman. 2014. Controlling
Singular Values with Semidefinite Programming. ACM Trans. Graph. 33, 4 (2014),
68:1–68:13.

Xin Li, Xiaohu Guo, Hongyu Wang, Ying He, Xianfeng Gu, and Hong Qin. 2007. Har-
monic Volumetric Mapping for Solid Modeling Applications. In Proc. SPM 2007.
109–120.

Juncong Lin, Jiazhi Xia, Xing Gao, Minghong Liao, Ying He, and Xianfeng Gu. 2015.
Interior structure transfer via harmonic 1-forms. Multimedia Tools and Applications
74, 1 (2015), 139–158.

Manish Mandad, Ruizhi Chen, David Bommes, and Marcel Campen. 2022. Intrinsic
mixed-integer polycubes for hexahedral meshing. Computer Aided Geometric Design
94 (2022), 102078.

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

https://arxiv.org/abs/1505.00073

129:16 • Steffen Hinderink and Marcel Campen

Tobias Martin, Guoning Chen, Suraj Musuvathy, Elaine Cohen, and Charles Hansen.
2012. Generalized Swept Mid-structure for Polygonal Models. Computer Graphics
Forum 31, 4 (2012), 805–814.

Tobias Martin, Elaine Cohen, and Robert M. Kirby. 2008. Volumetric Parameterization
and Trivariate B-spline Fitting using Harmonic Functions. In Proc. SPM 2008. 269–
280.

I. Moerdijk and J. Mrčun. 2003. Introduction to Foliations and Lie Groupoids. Cambridge
University Press.

Alexander Naitsat, Yufeng Zhu, and Yehoshua Y. Zeevi. 2020. Adaptive Block Coordinate
Descent for Distortion Optimization. Computer Graphics Forum 39, 6 (2020), 360–
376.

M. Nieser, U. Reitebuch, and K. Polthier. 2011. CubeCover – Parameterization of 3D
Volumes. Computer Graphics Forum 30, 5 (2011), 1397–1406.

Valentin Z. Nigolian, Marcel Campen, and David Bommes. 2023. Expansion Cones: A
Progressive Volumetric Mapping Framework. ACM Trans. Graph. 42, 4 (2023).

MatthewOverby, Danny Kaufman, and Rahul Narain. 2021. Globally Injective Geometry
Optimization with Non-Injective Steps. Computer Graphics Forum 40, 5 (2021), 111–
123.

Nico Pietroni, Marcel Campen, Alla Sheffer, Gianmarco Cherchi, David Bommes, Xifeng
Gao, Riccardo Scateni, Franck Ledoux, Jean Remacle, and Marco Livesu. 2022. Hex-
Mesh Generation and Processing: A Survey. ACM Trans. Graph. 42, 2 (2022), 16:1–
16:44.

Roman Poya, Rogelio Ortigosa, and Theodore Kim. 2023. Geometric Optimisation Via
Spectral Shifting. ACM Trans. Graph. 42, 3 (2023), 29:1–29:15.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 4 (2017), 16:1–16:16.

Patrick Schmidt, Janis Born, Marcel Campen, and Leif Kobbelt. 2019. Distortion-
Minimizing Injective Maps Between Surfaces. ACM Trans. Graph. 38, 6 (2019),
156:1–156:15.

Christian Schüller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung. 2013.
Locally Injective Mappings. Computer Graphics Forum 32, 5 (2013), 125–135.

Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Softw. 41, 2 (2015), 11:1–11:36.

Breannan Smith, Fernando De Goes, and Theodore Kim. 2019. Analytic Eigensystems
for Isotropic Distortion Energies. ACM Trans. Graph. 38, 1 (2019), 3:1–3:15.

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.
ACM Trans. Graph. 34, 4 (2015), 70:1–70:9.

Tommaso Sorgente, Silvia Biasotti, and Michela Spagnuolo. 2022. Polyhedron kernel
computation using a geometric approach. Computers & Graphics 105 (2022), 94–104.

Jian-Ping Su, Xiao-Ming Fu, and Ligang Liu. 2019. Practical Foldover-Free Volumetric
Mapping Construction. Computer Graphics Forum 38, 7 (2019), 287–297.

Jian-Ping Su, Chunyang Ye, Ligang Liu, and Xiao-Ming Fu. 2020. Efficient Bijective
Parameterizations. ACM Trans. Graph. 39, 4 (2020), 111:1–111:8.

Thomas Toulorge, Christophe Geuzaine, Jean-François Remacle, and Jonathan Lam-
brechts. 2013. Robust untangling of curvilinear meshes. J. Comput. Phys. 254 (2013),
8–26.

Sofia Trautner, Bert Jüttler, and Myung-Soo Kim. 2021. Representing planar domains by
polar parameterizations with parabolic parameter lines. Computer Aided Geometric
Design 85 (2021), 101966.

W. T. Tutte. 1963. How to draw a graph. Proc. Lond. Math. Soc. 13 (1963), 743–767.
Yalin Wang, Xianfeng Gu, Tony F. Chan, Paul M. Thompson, and Shing-Tung Yau. 2004.

Volumetric harmonic brain mapping. In Proc. ISBI 2004. 1275–1278.
Ofir Weber and Denis Zorin. 2014. Locally Injective Parametrization with Arbitrary

Fixed Boundaries. ACM Trans. Graph. 33, 4 (2014), 75:1–75:12.
Jiazhi Xia, Ying He, Shuchu Han, Chi-Wing Fu, Feng Luo, and Xianfeng Gu. 2010.

Parameterization of Star-Shaped Volumes Using Green’s Functions. In Proc. GMP
2010. 219–235.

Yongjie Zhang, Wenyan Wang, and Thomas J. R. Hughes. 2012. Solid T-spline construc-
tion from boundary representations for genus-zero geometry. Comput. Methods
Appl. Mech. Eng. 249–252 (2012), 185–197.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing
Models. arXiv:1605.04797

A MESH REFINEMENT
To (conservatively) generate a refined mesh𝑀 ′ on which the piece-
wise linearization of the foliation based map Ψ (as of Section 5)
remains bijective, the edges of 𝑀 are extruded through the mesh
along the foliation, splitting the tetrahedra encountered. Per tetra-
hedron, the extrusion of an edge is planar due to the piecewise
constant nature of the foliation’s direction field 𝑑 . The resulting
blocks therefore are truncated polygonal prisms. These are then

split into tetrahedra, pyramids, and triangular prisms by triangulat-
ing their polygonal bases. Pyramids and triangular prisms can then
further be split into two and three tetrahedra, respectively. This
yields the tetrahedral mesh𝑀 ′. This mesh has the property that two
distinct leaves of the foliation that pass through a common tetrahe-
dron, pass only through common tetrahedra all along. Hence, they
pass through the same stack of tetrahedra, from center to boundary.
Based on this property, bijectivity of the piecewise linearized map
Ψ′ on𝑀 ′ is easily shown [Campen et al. 2016, Prop. 8].

Implementation. The above conceptual procedure can be imple-
mented as follows. Rather than incrementally performing splits,
edge by edge and tetrahedron by tetrahedron, our proposed im-
plementation first plans the complete refinement of 𝑀 , and then
constructs the refined mesh 𝑀 ′. This avoids intermediate non-
conforming configurations (refined elements adjacent to not yet
refined ones) that are challenging to handle in the three-dimensional
polyhedral setting and require complex data structures. The refine-
ment plan is stored as 2D patterns on the triangles of 𝑀 . These
patterns describe the bases of the above mentioned truncated polyg-
onal prisms, that will be divided into the tetrahedron stacks. First,
every edge of 𝑀 is iteratively projected through the tetrahedra
(along the foliation direction) inwards until 𝑝0 and outwards until
the boundary 𝜕𝑀 is reached. On every triangle that is hit in this pro-
cess, the edge’s projection (a line segment) is stored in this triangle’s
pattern. Each such pattern is represented as a 2D arrangement (we
use the implementation from CGAL). In the end, the pattern on each
triangle of𝑀 is a polygonal partition of the triangle, induced by the
straight line segments. Next, we triangulate these pattern polygons
in a consistent manner: A polygon of one triangle is triangulated,
and the introduced additional line segments again projected through
the mesh along the foliation. This triangulates all polygons of the
same stack (pierced by the same bundle of leaves) in the same way.
For each tetrahedron, the (now triangular) patterns on its four face
triangles define a set of triangular truncated prisms (consisting of
triangular prisms, pyramids, and tetrahedra) partitioning the tetra-
hedron. Hence, we can now incrementally build 𝑀 ′ from scratch:
For each prism, implied by the patterns on𝑀 , a set of (commonly
1–3) tetrahedra (partitioning this prism) is added to 𝑀 ′. Special
care must be taken to ensure conformance of these tetrahedra: The
truncated prisms share triangular or quadrangular faces. The same
diagonal of quadrangular faces must be used when defining the
tetrahedra for the two adjacent prisms, i.e. these diagonals need to
be chosen and fixed per quadrangular face in advance. Note that a
prism whose 3 quadrilateral faces have diagonals fixed in the same
direction cannot be filled with just 3 tetrahedra. This case can either
be avoided (by computing a globally consistent orientation for the
diagonals) or such a prism simply be filled with 8 tetrahedra around
an additional vertex, positioned in the center of its 6 neighbors in
object space as well as in image space.

Simplification. To reduce the amount of refinement we employ
the strategies described in [Campen et al. 2016, Appendices B.1
and B.3]: Before refinement, the foliation directions are greedily
adjusted to align to edges and faces, reducing the number of stacks
implied. After refinement, the subtetrahedralizations per original
tetrahedron are decimated as long as bijectivity is maintained.

ACM Trans. Graph., Vol. 42, No. 4, Article 129. Publication date: August 2023.

https://arxiv.org/abs/1605.04797

	Abstract
	1 Introduction
	1.1 Contribution

	2 Related Work
	2.1 Aiming for Bijectivity
	2.2 Maintaining Bijectivity
	2.3 Establishing Bijectivity

	3 Overview
	4 Background
	4.1 Meshes
	4.2 Foliations & Shellings
	4.3 Star-Shapes

	5 Bijective Star-Shaped Mapping
	5.1 Map Definition
	5.2 Piecewise Linearization

	6 Galaxy of Stars
	6.1 Growing Stars
	6.2 Star Map Fusion
	6.3 Numerics

	7 Results
	7.1 Datasets
	7.2 Evaluation
	7.3 Comparison
	7.4 Limitations

	8 Conclusion
	Acknowledgments
	References
	A Mesh Refinement

